1 Вопрос .Общее понятие о фармакологии

наука о психотропный лекарственных веществах (влияющие на нейроны )влияется на нейрон (связь между нейронами).

классификация веществ

1.анксиолептики (против страха)2.антидепресанты( дипрессия)3.нейролептики( против шизофрении) 4.анестетики(обезболивающее)5.ноотпропы (разум) 6.противо эпелепсический(эпелепсия) 7. Противопокирсония(пакирсон) 8. Сегативное( успокаивающее).9.психостимуляторы(адоптогены(возбуждающее на нервную систему)10 снотворное.11апиоиды.

основы фармакологии

изучает закономерности всасывания распределения матоболизма выведения лекарственных средств а так же биологические эффекты и механизмы дейчствия 1. Внутрь(орально(через рот сироп капли таблетки (15-40 мин)

2 рассасывание (под языком валидол нитроглицерин (самый быстрый путь в кровь(нет проблем с соляной кислотой хорошо растворимый)

3 ректальный (через прямую кишку (всасывание быстрое безсознательно)

4 ввидение под кожу (в руку или под лопатку ( через 15-20 или 1-2 мл)

5 внутримышечное (мак 10 мл (15-20 мин0

6 внутривенное медл. Видение (эффект сразу)

7 внутри артериальный (хирургия)

8 внутрисердечный(попасть влевый желудочек сердца)

9 в целепростиральную жидкость ( спинномозговую

10иголяционный (дыхательные пути аэрозоль)

11накожный (мази ,кремы ,примочки)

2 Вопрос фармакодинамика

Фармакодинамика — один из основных разделов фармакологии, изyчaющий совокупность эффектов, вызываемых лекарственными средствами, а также механизмы, лежащие в основе их действия.

Фармакодинамика включает понятия о фармакологических эффектах, локализации действия и механизмах действия лекарственных веществ (т.е. представление о том, как, где и каким образом лекарственные вещества действуют в организме).

К фармакодинамике относится также понятие о видах действия лекарственных веществ. Фармакологические эффекты изменения функции органов и систем организма, вызываемые лекарственными веществами.( повышение частоты сердечных сокращений ,снижение артериального давления , повышение порога болевой чувствительности, снижение температуры тела, увеличение продолжительности сна, устранение бреда и галлюцинаций) одни полезные эффекты( основные) другие (побочные эффекты)

Благодаря современным мртодическим приемам, можно определить локализацию действия веществ не только на системном и органном, но на клеточном и молекулярном уровнях. Например, сердечные гликозиды действуют на сердце (органный уровень), на кардиомиоциты (клеточный уровень), на мембран кардиомиоцитов (молекулярный уровень).

8 стр., 3950 слов

6-7 Фармакодинамика

... действия эндогенных лигандов и препятствуют раз­витию клеточного ответа, усиливая эффекты других, неблокиро­ванных циторецепторов. Вещества, блокирующие активные цент­ры циторецепторов, являются конкурентными антагонистами. Возможно сочетание в фармакодинамике ... (тубулин). ВИДЫ ДЕЙСТВИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ Местное и резорбтивное действие Местное действие -эффекты лекарственных средств на месте ...

Одни и те же фармакологические эффекты могут быть вызваны различными способами. Так, есть вещества, которые вызывают снижение артериального давления, уменьшая синтез ангиотензина II((((((олигопептидный гормон, который вызываетвазоконстрикцию(сужение сосудов)))) (ингибиторы ангиотензинконвертирующего фермента), или блокируя поступление Са2+ в гладкомышечные клетки (блокаторы потенциалозависимых кальциевых каналов), или уменьшая выделение медиатора норадреналина из окончаний симпатических волокон (симпатолитики).

Способы, которыми лекарственные вещества вызывают фармакологические эффекты, определяются как механизмы действия лекарственных веществ.

3 Вопрос принцип классификации фармпрепаратов

классификация веществ

1.анксиолептики (против страха)2.антидепресанты( дипрессия)3.нейролептики( против шизофрении) 4.анестетики(обезболивающее)5.ноотпропы (разум) 6.противо эпелепсический(эпелепсия) 7. Противопокирсония(пакирсон) 8. Сегативное(успокаивающее).9.психостимуляторы(адоптогены(возбуждающее на нервную систему)10 снотворное.11апиоиды.

4 Вопрос фармакокинестетика .Поступление препаратов в организмах метаболизм и выведение.

Ф А Р М А К О К И Н Е Т И К А — это раздел фармакологии о всасывании, распределении в организме, депонировании, метаболизме и выведении веществ.

изучает закономерности всасывания распределения матоболизма выведения лекарственных средств а так же биологические эффекты и механизмы дейчствия

1. Внутрь(орально(через рот сироп капли таблетки (15-40 мин)

2 рассасывание (под языком валидол нитроглицерин (самый быстрый путь в кровь(нет проблем с соляной кислотой хорошо растворимый)

3 ректальный (через прямую кишку (всасывание быстрое безсознательно)

4 ввидение под кожу (в руку или под лопатку ( через 15-20 или 1-2 мл)

5 внутримышечное (мак 10 мл (15-20 мин0

6 внутривенное медл. Видение (эффект сразу)

7 внутри артериальный (хирургия)

8 внутрисердечный(попасть влевый желудочек сердца)

9 в целепростиральную жидкость ( спинномозговую

10иголяционный (дыхательные пути аэрозоль)

11накожный (мази ,кремы ,примочки)

Всасывание — процесс поступления лекарства из места введения в кровеносное русло. Независимо от пути введения скорость всасывания препарата определяется тремя факторами: а) лекарственной формой (таб­летки, свечи, аэрозоли); б) растворимостью в тканях; в) крово­током в месте введения.

Существует ряд последовательных этапов всасывания лекарственных средств через биологические барьеры:

1) Пассивная диффузия. Таким путем проникают хорошо раство­римые в липоидах лекарственные вещества. Скорость всасывания определяется разностью его концентрации с внешней и внутренней стороны мембраны;

2) Активный транспорт. В этом случае перемещение веществ че­рез мембраны происходит с помощью транспортных систем, содер­жащихся в самих мембранах;

3) Фильтрация. Вследствие фильтрации лекарства проникают через поры, имеющиеся в мембранах (вода, некоторые ионы и мел­кие гидрофильные молекулы лекарственных веществ).

Интенсив­ность фильтрации зависит от гидростатического и осмотического давления;

4) Пиноцитоз. Процесс транспорта осуществляется посредством образования из структур клеточных мембран специальных пузырьков, в которых заключены частицы лекарственного вещества. Пузырьки перемещаются к противоположной стороне мембраны и высвобождают свое содержимое.

9 стр., 4007 слов

Значение лекарственных веществ и лекарственных форм, содержащих антибиотик

... данной курсовой работы - изучить лекарственные вещества и лекарственные формы, содержащие антибиотик. Задачи: 1. выявить значение лекарственных веществ и лекарственных форм, содержащих антибиотик; 2. изучить ... должен вредить макроорганизму. Аллергенность и токсичность и после введения разовой дозы, и после многократного введения должны отсутствовать. - Антибиотик не должен препятствовать процессу ...

Распределение. После введения в кровеносное русло лекарственное вещество распределяется по всем тканям организма. Распределение лекарственного ве­щества определяется его растворимостью в липидах, качеством свя­зи с белками плазмы крови, интенсивностью регионарного крово­тока и другими факторами.

Значительная часть лекарства в первое время после всасывания попадает в те органы и ткани, которые наи­более активно кровоснабжаются (сердце, печень, легкие, почки).

Многие естественные вещества циркулируют в плазме частично в свободном виде, а частично в связанном состоянии с белками плазмы. Ле­карственные средства также циркулируют как в связанном, так и в свободном состоянии. Важно, что фармакологически активна только свободная, несвязанная фракция препарата, а связанная с протеином представляет собой биологически неактивное со­единение. Соединение и распад комплекса препарата с белком плазмы происходят как правило быстро.

Метаболизм (биотрансформация) — это комплекс физико-химических и биохими­ческих превращений, которым подвергаются лекарственные вещества в орга­низме. В результате образуются метаболиты (водорастворимые вещества), которые лег­ко выводятся из организма.

В результа­те биотрансформации вещества приобретают большой заряд (ста­новятся более полярными) и как следствие большую гидрофильность, т. е. растворимость в воде. Подобное изменение химической структуры влечет за собой изменение фармакологических свойств (как правило, уменьшение активности), скорости выделения из организма.

Это происходит по двум основным направлениям: а) снижение растворимости препаратов в жирах и б) сниже­ние их биологической активности.

Этапы метаболизма: Гидроксилирование. Диметилирование. Окисление. Образование сульфоксидов.

Выделяют два типа метаболизма лекар­ственных препаратов в организме:

Несинтетические реакции метаболизма лекарств, осуществляемые ферментами. К несинтетическим реакциям относится окисление, восстанов­ление и гидролиз. Они разделяют на катализируемые ферментами лизосом клеток (микросомальные) и катализируемые ферментами другой локализации (немикросомальные).

Синтетичес­кие реакции, которые реализуются с помощью эндогенных субстратов. В основе этих реакций лежит конъ­югация лекарственных препаратов с эндогенными субстратами (глюкуроновая кислота, глицин, сульфаты, вода и др.).

Элиминация. Различают несколько путей выведения (экскреции) лекарствен­ных веществ и их метаболитов из организма: с калом, мочой, выдыхаемым воздухом, слюнными, потовыми, слезными и молочными железами.

Элиминация через кишечник.

После приема препарата внутрь для системного действия часть его, не абсорбируясь, может экскретироваться с каловыми массами. Иногда внутрь принимают лекарственные средства, специально не предназначенные для аб­сорбции в кишечнике (например, неомицин).

4 стр., 1927 слов

Средства, вызывающие лекарственную зависимость

... Лекарственная зависимость Наркотические вещества довольно широко применяются в современной медицине как обезболивающие и усыпляющие средства. Но этим эффектом воздействие наркотических веществ ... и другие), ряд препаратов с седативным эффектом (например, мепробамат, натрия оксибутират). Токсикомании могут быть ... последующем, однако, больные вынуждены наращивать дозы, принимать снотворные в дневные часы. ...

Под влиянием ферментов и бакте­риальной микрофлоры желудочно-кишечного тракта лекарствен­ные препараты могут превращаться в другие соединения, которые вновь могут доставляться в печень, где и проходит новый цикл.

К важнейшим механизмам, способствующим активному тран­спорту препарата в кишечник, относится билиарная экскреция (печенью).

Из печени с помощью активных транспортных систем лекарствен­ные вещества в виде метаболитов или, не изменяясь, поступают в желчь, затем в кишечник, где и выводятся с калом.

Степень выведения лекарственных веществ печенью следует учитывать при лечении больных, страдающих болезнями печени и воспалительными заболеваниями желчных путей.

Элиминация через легкие. Легкие служат основным путем введения и элиминации летучих анестезирующих средств. В дру­гих случаях медикаментозной терапии их роль в элиминации невелика.

Элиминация лекарственных веществ грудным молоком. Лекарственные вещества, содержащиеся в плазме кормящих жен­щин, экскретируются с молоком; их количества в нем слишком малы для того, чтобы существенным образом влиять на их элими­нацию. Однако иногда лекарственные средства, попадающие в организм грудного ребенка, могут оказывать на него существенное воздействие (снотворные, анальгетики и др.).

5 Вопрос закономерности распределения препаратов. Гематотканевые барьеры

Распределение лекарственных средств в организме обеспечивается системой кровообращения. Равномерному распределению лекарств препятствуют мембраны органов, клеток и клеточных органелл. При переносе лекарственного средства через мембраны возможно его частичное связывание с ингредиентами биологических жидкостей по обе стороны мембраны. Существуют разные типы связывания лекарственных средств, отличающиеся по степени специфичности. Наиболее универсально связывание лекарств на поверхности белковых молекул, главным образом альбуминов крови. Оно происходит за счет гидрофобного взаимодействия и характеризуется быстрой обратимостью. В картине общего распределения препаратов их связывание с белками крови имеет двоякое значение. С одной стороны, оно может сопровождаться понижением концентрации активного препарата и в соответствии с этим ослаблением эффекта; с другой стороны, связывание способствует депонированию препарата и тем самым продлевает его пребывание в организме. Так, медленное выведение и значительная продолжительность эффекта сульфаниламидов длительного действия и доксициклина во многом обусловлены высокой степенью связывания этих препаратов с белками крови.

Известно также специфическое связывание лекарств некоторыми тканями. Так, хорошо растворимые в липидах вещества, например барбитураты, депонируются в жировой ткани. При выходе из наркоза или при диализе по поводу отравления барбитуратами проявляется феномен так называемого вторичного сна, развивающийся вследствие мобилизации этих веществ из жировых депо. Другим примером специфического депонирования лекарств у человека является накопление тетрациклинов в растущей костной ткани и дентине зубов.

Наиболее важным участком связывания лекарственных веществ являются специфические рецепторы. В области специфического рецептора концентрация лекарственного средства значительно превышает его концентрацию в окружающей биологической жидкости, но ввиду относительно малого размера рецептора это связывание обычно практически не отражается на общей картине распределения препарата в организме.

8 стр., 3728 слов

Лекарственные средства, влияющие на ЦНС

... (аналептики, психостимуляторы). Некоторые группы веществ могут вызывать как возбуждающий, так и угнетающий эффект (например, антидепрессанты). Лекарственные средства, угнетающие ЦНС Наиболее сильно угнетают ЦНС группа препаратов - общие анестетики ...

Затруднено прохождение многих веществ через гематоэнцефалuческuй барьер. Это связано с особенностями строения капилляров мозга. Через гематоэнцефалический барьер плохо проходят полярные соединения. Липофильные молекулы проникают в ткани мозга легко. Имеются отдельные небольшие участки головного мозга (область эпифиза, задней доли гипофиза и др.), в которых гематоэнцефалический барьер практически неэффективен. При некоторых патологических состояниях (например, при воспалении мозговых оболочек) проницаемость гематоэнцефалического барьера повышается.

6 Вопрос. Понятие о разовой ,суточной ,макс допустимой дозах .Расчет дозы назначаемого лекарства

1 доза –терапевтическая а0 мин (кол-во вещ-ва вызывающий терап. Эффект)б) средняя доза (оптим. Терап.эффект)в) макс кол-во вещ-ва кот не достигает токсический эффект)

2 доза- токсическая а)мин эффект (вызывает отравление у 10%) б) среднее кол-во 50%) в) макс (у 100% но без летальных исходов ) 3 доза летальная а) мин 10 % умирают б) средняя 50% умирают в) макс 100% умирают) Минимальные дозы, в которых лекарственные средства вызывают начальный биологический эффект, называют пороговыми, или минимальными действующими. В практической медицине чаще всего используют средние терапевтические дозы, в которых препараты у преобладающего большинства больных оказывают необходимое фармакотерапевтическое действие. Кроме того, выделяют токсические дозы, в которых вещества вызывают опасные для организма токсические эффекты, и смертельные дозы.

7 Вопрос терапевтическая и токсическая дозах. Расчет терапевтич. Диапазона

1 доза –терапевтическая а0 мин (кол-во вещ-ва вызывающий терап. Эффект)б) средняя доза (оптим. Терап.эффект)в) макс кол-во вещ-ва кот не достигает токсический эффект)

2 доза- токсическая а)мин эффект (вызывает отравление у 10%) б) среднее кол-во 50%) в) макс (у 100% но без летальных исходов ) терапевтические дозы, в которых препараты у преобладающего большинства больных оказывают необходимое фармакотерапевтическое действие. Кроме того, выделяют токсические дозы, в которых вещества вызывают опасные для организма токсические эффекты, и смертельные дозы.

8 Вопрос принципы классификации фармакологических препаратов химическая и фармакологическая классификация

Химическая классификация. В основе ее лежит химическая структура лекарственных веществ. Например, производные имидазола: бендазол, клотримазол, метронидазол; производные фенотиазина: хлорпромазин, этапиразин; производные метилксантина: кофеин, теофиллин, теобромин. Близкие по химической структуре лекарственные вещества могут оказывать на организм разные эффекты. Фармакологическая классификация. Она является комбинированной. Согласно этой классификации лекарственные средства делятся на разряды — большие блоки, соответствующие системе организма, на которую действует лекарственное средство, например лекарственные средства, действующие на сердечнососудистую систему, центральную нервную систему и т.д. Разряды подразделяются на классы. Класс определяет характер фармакологического действия лекарственного средства. Например, разряд «Лекарственные средства, действующие на сердечнососудистую систему» подразделяется на классы: «Антиаритмические средства», «Кардиотонические средства», «Антигипертензивные (гипотензивные) средства» и др. Классы делятся на группы. Например, класс «Антиаритмические средства» делится на 4 группы: блокаторы натриевых каналов, препараты, замедляющие реполяризацию, бетаадреноблокаторы, блокаторы кальциевых каналов. Группы делятся на подгруппы. Например, группа бетаадреноблокаторов делится на неселективные и селективные. Таким образом, фармакологическая классификация имеет многоступенчатый характер. Фармакотерапевтическая классификация. В ее основу положены заболевания, при которых применяются конкретные лекарственные средства. Например, «Средства для лечения язвенной болезни желудка и двенадцатиперстной кишки», «Средства для лечения бронхиальной астмы».

13 стр., 6091 слов

Контрольная работа по анатомии- Нейрон — структурно — ...

... вещество-посредник (медиатор). Молекулы медиатора достаточно быстро диффундируют через синаптическую щель и возбуждают в управляемой клетке (другом нейроне, мышечном волокне, некоторых клетках ... от природы физиологически активного вещества, которое выделяется нервными   окончаниями данного нейрона (например, холинергический нейрон секретирует ацетилхолин,  пептидер-гический  — & ...

9 Вопрос. Особенности нейрона как структурной единицы нервной системы .Нейронные сети

    Структурно-функциональной единицей нервной системы является нервная клетка, или нейрон          В нейроне выделяют следующие основные части: тело, отростки и их окончания.          Тело нейрона, размеры которого колеблются от 4 до 130 мкм, представляет собой скопление клеточной плазмы, в которой располагается ядро – носитель генетической информации, митохондрии – универсальные «генераторы» энергии, необходимой для обеспечения деятельности клетки, и большое количество структур, выполняющих различные специфические функции.          Поверхность нейрона, его оболочка, часто именуемая просто как мембрана, не только обеспечивает обмен с окружающей средой, но, обладая свойствами полупроницаемой мембраны, является структурной, где развиваются сложные процессы биоэлектрогенеза, лежащие в основе главных функций нервной клетки.          Отростки нервных клеток являются выростами цитоплазмы. Различают два вида отростков. Дендриты – короткие, древовидно ветвящиеся, постепенно истончаются и заканчиваются в окружающих тканях. Количество их достигает десяти, они многократно увеличивают поверхность клетки.          Помимо дендритов нервная клетка всегда имеет один аксон (или нейрит).

Этот отросток всегда более крупный, длинный (до 1 м) и менее ветвистый. Аксон заканчивается синапсом, при помощи которого он функционально взаимодействует с иннервируемыми структурами.          По всей функциональной значимости в составе рефлекторной дуги различают три вида нейтронов:          рецепторные (чувствительные, афферентные), имеющие чувствительные нервные окончания, которые способны воспринимать раздражения из внешней или внутренней среды;          эффекторные (эфферентные), окончания аксонов которые передают нервный сигнал на рабочий орган;          ассоциативные (вставочные, центральные), являющиеся промежуточными в составе рефлекторной дуги и передающие информацию с чувствительного нейрона на эффекторные.          Следует иметь в виду, что на теле и отростках большинства нервных клеток имеется очень большое количество синапсов, через которые поступает информация с других нейронов.          Несмотря на громадное морфологическое и функциональное разнообразие нейронов, можно выделить ряд ключевых свойств и функций.          К числу наиболее важных свойств относятся:          1. Наличие трансмембранной разности потенциалов, т.е. между наружной и внутренней поверхностями оболочки нейрона в покое регистрируется разность потенциала порядка 90 мВ, наружная поверхность электроположительна по отношению к внутренней. Величина и направление трансмембранного тока меняются в зависимости от состояния нейрона.          2. Очень высокая чувствительность к некоторым химическим веществам (медиаторам) и электрическому току.          3. Способность к нейросекреции, т.е. к синтезу и выделению в окружающую среду или в синаптическую щель биологически активных веществ.          4. Высокий уровень энергетических процессов, что обуславливает необходимость постоянного притока основного источника энергии – глюкозы и кислорода, необходимого для окисления.          Принято различать следующие функции нейрона:          1. Воспринимающая – эта функция представлена двумя механизмами. Во-первых, чувствительные окончания дендритов способны обеспечить рецепцию, т.е. трансформацию специфической энергии раздражителя внешней или внутренней среды в неспецифический процесс нервного возбуждения, нервный импульс, который по отростку распространяется по направлению к телу нервной клетки. Во-вторых, на всех частях нейрона имеются многочисленные (до нескольких десятков тысяч) синапсы, при помощи которых химическим путем возбуждение передается от одного нейрона к другому. Химические вещества, осуществляющие эту передачу, обозначают медиаторы (или нейтротрансмиттеры).

6 стр., 2600 слов

Раздел «Физиология сенсорных систем»

... системах. Дивергенция и конвергенция сенсорных потоков. Рецептивное поле центрального нейрона. Топические отношения в сенсорных системах. ... вид раздражения и преобразующая его в нервный процесс. Рецепторный потенциал – изменение ... веществ. Обонятельные стимулы могут определенным образом влиять на эмоциональное состояние человека и мофидицировать его поведение. ОБОНЯТЕЛЬНЫЙ ЭПИТЕЛИЙ Сенсорный нейрон. ...

К их числу, в частности, относятся адреналин, норадреналин, дофамин, серотонин, ацетилхолин, гамма-аминомасляная кислота и многие другие. В результате воздействия медиатора в теле нервной клетки развивается возбуждение и возникновение нервного импульса или снижение возбудимости нейрона – его торможение.          2. Интегративная функция – обработка одновременно или в течение короткого интервала времени поступающих нервных сигналов по механизму их алгебраической суммации, в результате которого на выходе нейрона формируется сигнал, несущий в себе информацию всех суммированных сигналов.          3. Мнестическая функция, заключающаяся в том, что существуют тонкие молекулярные биофизические процессы, сохраняющие след от всякого предыдущего воздействия и благодаря этому трансформирующие характер ответной реакции на всякое последующее. По существу, это элементарная форма памяти и научения.          4. Проводниковая функция, суть которой состоит в том, что от тела нейрона по аксону к его окончанию в естественных условиях только в одном этом направлении распространяется, не затухая, нервный импульс. Скорость его распространения в зависимости от морфофункциональных особенностей проводника колеблется от нескольких сантиметров до 100-120 метров секунду.          5. Передающая функция, проявляющая в том, что нервный импульс, достигнув окончания аксона, который, собственно, уже входит в структуру синапса, обусловливает выделение медиатора – непосредственного передатчика возбуждения к другому нейрону или исполнительному органу.

4 стр., 1755 слов

Физико-химические основы взаимодействия лекарственных веществ ...

... рецепторов, эффективных для лечения повышенного артериального давления, сердечной недостаточности, хронической почечной недостаточности относятся лозартан; валзартан. Блокаторы бета-адренорецепторов ... ингибирующие действие эндогенных медиаторов благодаря блокированию их связывания с рецепторами. Наиболее изучены антагонисты, которые взаимодействуют с рецепторами вегетативной нервной системы. ...

10вопрос передача импульсов в нервной системе, синапсы и медиаторы Передача импульса в нервной системе происходит в несколько этапов:

  • проведение по нервному волокну электрического импульса;
  • процесс химической передачи в синапсе с помощью нейромедиатора (либо процесс в электрическом синапсе);
  • проведение электрического импульса по следующему нервному волокну, либо реакция мышечной (сокращение миоцита) или железистой ткани (экзоцитоз секрета).

С физиологической и биохимической точки зрения второй этап является наиболее сложным. Он представляет собой цепь процессов, суть которых сводится к преобразованию электрического сигнала в химический, а затем – химического в электрический.

Процесс химической передачи проходит ряд этапов: синтез медиатора, его накопление, высвобождение, взаимодействие с рецептором и прекращение действия медиатора. Каждый из этих этапов детально охарактеризован, и найдены препараты, которые избирательно усиливают или блокируют конкретный этап. Эти исследования позволили проникнуть в механизм действия психотропных лекарственных средств, а также выявить связь некоторых нервных и психических болезней со специфическими нарушениями синаптических механизмов:

  1. Синтез молекул медиатора в нервных окончаниях. Каждый нейрон обычно обладает только таким биохимическим «аппаратом», какой ему нужен для синтеза медиаторов, которые выделяются из всех окончаний его аксона. Молекулы медиатора синтезируются путём соединения предшественников или их изменений в результате ряда ферментативных реакций. Может быть один этап ферментативного катализа (ацетилхолин) или до трёх этапов (адреналин).

    Аминокислоты синтезируются из глюкозы. Многие этапы синтеза можно блокировать фармакологическими агентами, что лежит в основе действия многих лекарств, влияющих на нервную систему.

  2. После выработки молекул медиатора они накапливаются и хранятся в окончании аксона в маленьких мешочках, связанных с мембраной. В одном окончании могут быть тысячи синаптических пузырьков, каждый из которых содержит от 10 тыс. до 100 тыс. молекул медиатора.
  3. Высвобождение Приход нервного импульса в окончание аксона вызывает высвобождение множества молекул медиатора из окончания в синаптическую щель. Механизм такого выделения остаётся спорным: одни исследователи полагают, что синаптические пузырьки прямо сливаются с синаптической мембраной и выбрасывают своё содержимое в синаптическую щель; другие утверждают, что подвижное скопление молекул медиатора выходит через специальные каналы. Но в любом случае известно, что нервный импульс запускает выход медиатора, повышая проницаемость нервного окончания для ионов Ca2+, которые устремляются в него и активируют механизм высвобождения молекул.
  4. Взаимодействие с рецептором. Вышедшие молекулы медиатора быстро проходят через наполненную жидкостью щель между окончанием аксона и мембраной воспринимающего нейрона. Здесь они взаимодействуют со специфическими рецепторами постсинаптической мембраны. Рецепторы фактически представляют собой крупные белковые молекулы, погружённые в полужидкую матрицу клеточной мембраны: части их торчат над и под мембраной подобно айсбергам. Выходящий на поверхность участок рецепторного блока и молекула медиатора имеют одинаковые очертания, они соответствуют друг другу как ключ и замок. Существует 2 основных типа медиаторных рецепторов: быстро действующие – осуществляют передачу, регулируя проницаемость ионной поры, и медленно действующие, которые вызывают образование второго посредника, который в свою очередь опосредует эффекты, производимые медиатором в постсинаптическом нейроне.
  5. Окончательное действие Взаимодействие медиатора с его рецептором меняет трёхмерную форму рецепторного белка, инициируя этим определённую последовательность событий. Это взаимодействие может вызвать возбуждение или торможение нейрона, сокращение миоцита, а также образование и выделение гормона клеткой железы. Во всех этих случаях рецептор «переводит сообщение, закодированное в молекулярной структуре медиатора, в специфическую физиологическую реакцию. Как только молекула медиатора свяжется со своим рецептором, она должна быть инактивированна во избежание слишком длительного её действия и нарушения точного контроля передачи.

11Вопрос этапы передачи импульсов в синапсе

1) освобождение под действием нервного импульса специфического вещества из места его хранения в кончике аксона в узкое пространство между соседними нейронами и 2) процесс, путем которого специфическое вещество — медиатор — присоединяется к специфическим рецепторам в дендрите и вызывает изменение свойств его клеточной мембраны, приводящее к возникновению нового импульса. Первый процесс — особый случай нейросекре-ции, второй — особый случай хеморецепции, сходный с процессом, происходящим в органах химического чувства, например в органах вкуса и обоняния. Передачу химического медиатора от аксона к дендриту можно объяснить простой диффузией. На таком малом расстоянии диффузия должна протекать достаточно быстро, чтобы обеспечить скорость передачи, наблюдаемую в синапсе. Было показано, что двигательные нервы освобождают ацетилхолин отдельными «порциями», содержащими большое число молекул. Для функционирования механизма выделения ацетилхолина необходимы ионы кальция, а ионы магния тормозят его. Это позволяет предполагать, что медиатор хранится в нервных окончаниях, в мельчайших внутриклеточных структурах, которые освобождают все свое содержимое на поверхность клетки. На электронных микрофотографиях кончиков нейрона в синапсе видны скопления синаптических пузырьков, которые, возможно, служат местом хранения ацетилхолина. Можно представить себе, что каждый нервный импульс вызывает освобождение содержимого одного из этих пузырьков в синаптическое пространство.

12 стр., 5754 слов

1. Нейронная теория строения цнс. Нейрон – структурно-функциональный ...

... пузырька к пресинаптической мембране, слияние с ней, открытия в щель и изливания медиатора. Медиатор освобождается в синаптическую щель постоянно: в отсутствии импульсов возбуждения – редкими ... (действующий орган), называется рефлекторной дугой. В рефлекторной дуге различают пять звеньев: рецептор; чувствительное волокно, проводящее возбуждение к центрам; нервный центр, где происходит переключение ...

12Вопрос понятие о внс и соматической нервн системах . Симпатическая и парасимпатическая отделы внс. Отличия медиаторных структур симпатич и парасимпат. Систем

Вегетативная нервная система (синонимы: ВНС, автономная нервная система, ганглионарная нервная система, органная нервная система, висцеральная нервная система, чревная нервная система,— часть нервной системыорганизма, комплекс центральных и периферических клеточных структур, регулирующих функциональный уровень внутренней жизни организма, необходимый для адекватной реакции всех его систем.

Вегетативная нервная система — отдел нервной системы, регулирующий деятельность внутренних органов, желез внутренней и внешней секреции, кровеносных и лимфатических сосудов.[1] Играет ведущую роль в поддержании постоянства внутренней среды организма и в приспособительных реакциях всех позвоночных.

Анатомически и функционально вегетативная нервная система подразделяется на симпатическую, парасимпатическую и. Симпатические и парасимпатические центры находятся под контролем коры больших полушарий и гипоталамических центров.

В симпатическом и парасимпатическом отделах имеются центральная и периферическая части. Центральную часть образуют тела нейронов, лежащих в спинном и головном мозге. Эти скопления нервных клеток получили название вегетативных ядер. Отходящие от ядер волокна, вегетативные ганглии, лежащие за пределами центральной нервной системы, и нервные сплетения в стенках внутренних органов образуют периферическую часть вегетативной нервной системы.

Симпатические ядра расположены в спинном мозге. Отходящие от него нервные волокна заканчиваются за пределами спинного мозга в симпатических узлах, от которых берут начало нервные волокна. Эти волокна подходят ко всем органам.

Парасимпатические ядра лежат в среднем и продолговатом мозге и в крестцовой части спинного мозга. Нервные волокна от ядер продолговатого мозга входят в состав блуждающих нервов. От ядер крестцовой части нервные волокна идут к кишечнику, органам выделения

Отличия

Все преганглионарные волокна (симпатические и парасимпатические) содержат медиатор ацетилхолин или вещества, аналогичные ему, и называются холинергическими веществами. Парасимпатические постганглионарные волокна также холинергические. Симпатические постганглионарные волокна содержат адреналин, норадреналин или вещества, по действию аналогичные норадреналину, и называ ются адренергическими. Эрготоксин блокирует передачу нервного импульса в синапсах симпатической нервной системы, а атропин — парасимпатической.

а) В вегетативных ганглиях (как симпатических, так и парасимпатических) медиатором служит ацетилхолин. —

С его помощью передаётся возбуждение от преганглионарного волокна на эффекторный нейрон.

б) Медиаторы же в окончаниях постганглионарных волокон различны:

для парасимпатической системы это вновь ацетилхолин,

а для симпатической — норадреналин.

вегетативный нерв симпатический рефлекторный

13 Психологические и физиологические эффекты возбуждения и торможения симпатического отдела вегетативной нервной системы

Вегетативная нервная система осуществляет две функции:

а) эффекторную – вызывает деятельность неработающего органа или увеличивает деятельность работающего и тормозит или уменьшает функцию работающего органа;

б) трофическую – увеличивает или уменьшает обмен веществ в органе и во всем организме.

Эфферентные пути симпатической нервной системы начинаются в грудном и поясничном отделах спинного мозга от нейронов его боковых рогов. Передача возбуждения с предузловых симпатических волокон на послеузловые происходит в ганглиях пограничных симпатических стволов с участием медиатора ацетилхолина, а передача возбуждения с послеузловых волокон на иннервируемые органы — с участием медиатора адреналина, или симпатина.

14 Вопрос психологические и физиологические эффекты возбуждения и торможения парасимпатического отдела вегетативной нервной системы

Эфферентные пути парасимпатической нервной системы начинаются в головном мозгу от некоторых ядер среднего и продолговатого мозга и от нейронов крестцового отдела спинного мозга. Парасимпатические ганглии расположены непосредственной близости от иннервируемых органов или внутри их. Проведение возбуждения в синапсах парасимпатического пути происходит с участием медиатора ацетилхолина.

15 Вопрос. Основные механизмы влияния фармакологических препаратов на организм человека.

Лекарственные вещества, воздействуя на организм, вызывают изменения в деятельности определенных органов и систем. Например, лекарственные вещества могут усилить сокращения сердца, устранить спазм бронхов, повысить артериальное давление, устранить страх и психическую напряженность, уменьшить боль, стимулировать умственную деятельность и т. д. Подобные изменения, вызванные лекарственными веществами, обозначают термином «фармакологические   эффекты».

Для  каждого лекарственного  вещества  характерны  определенные   фармакологические  эффекты.   В   каждом   конкретном  случае  с  лечебными   целями   используют  лишь  определенные   эффекты   лекарственного   средства.  Такие   эффекты называют основными фармакологическими эффектами. Остальные    (неиспользуемые,   нежелательные)   фармакологические эффекты обозначают как побочные.

Недопустимо применение какого-либо лекарственного средства без знания всех его фармакологических эффектов. Так, для того, чтобы применять эфедрин  при бронхиальной астме, недостаточно знать, что эфедрин расширяет бронхи. Этот препарат также повышает автоматизм сердца (противопоказан при тахиаритмиях), повышает артериальное давление (противопоказан при гипертонической болезни), стимулирует ЦНС (эфедрин не следует назначать на ночь, так как он может вызвать бессонницу).

Один и тот же фармакологический эффект различные вещества могут вызывать разными способами. Например, чтобы снизить артериальное давление, можно уменьшить работу сердца, расширить кровеносные сосуды, уменьшить объем плазмы крови. В свою очередь эти возможности могут быть реализованы разными путями. Так, расширить кровеносные сосуды можно, воздействуя непосредственно на гладкие мышцы сосудов или блокируя сосудосуживающее влияние симпатической иннервации. Последнее можно осуществить, блокируя симпатические ганглии, окончания симпатических нервов или рецепторы сосудов, на которые передается возбуждение  симпатической  нервной  системы.

Способы, которыми лекарственные вещества вызывают те или иные фармакологические эффекты, обозначают термином «механизмы действия».

Большинство лекарственных веществ стимулирует или угнетает функции тех или иных органов, воздействуя на их специфические рецепторы. Такими рецепторами чаще всего являются молекулы белков, с которыми связаны данные функции. Примерами специфических рецепторов могут быть холинорецепторы , адренорецепторы , опиатные рецепторы  и др. Особой разновидностью специфических рецепторов являются ферменты. Например, для антихолинэстеразных средств  специфическим рецептором является ацетилхолин-эстераза.

Изменения, которые непосредственно связаны с действием веществ на специфические рецепторы, обозначают термином «первичная фармакологическая реакция». Первичная фармакологическая реакция может быть началом целой серии реакций, которые приводят к стимуляции или угнетению определенных физиологических функций, т. е. характерным для данного лекарственного вещества фармакологическим эффектам.

Отдельные лекарственные средства  проявляют свое действие независимо от каких-либо специфических рецепторов.

Механизмы действия разных лекарственных веществ изучены в разной степени. В сущности, нельзя утверждать, что механизм действия какого-либо вещества известен в совершенстве. Поэтому изучение механизмов действия лекарственных веществ ведется постоянно. При этом представления о механизме действия того или иного лекарственного вещества могут не только становиться более детальными, но и существенно меняться. Вместе с тем знание механизмов действия лекарственных средств оказывает неоценимую помощь для правильного их применения.

16Вопрос

17Вопрос

18 Вопрос. Ацетилхолин основные структуры мозга, в которых ацетилхолин выступает медиатором .Понятия о м и н –холинорецепторах ,холинолитики,холиномемитики.

Ацетилхолин осуществляет передачу нервных импульсов в холнергических синапсах.Открытие медиаторной роли ацетилхолин принадлежит австрийскому фармакологу О.Леви.Это возбуждающий медиатор.Ацетилхолину принадлежит также важная роль как медиатору ЦНС. Он участвует в передаче импульсов в разных отделах мозга, при этом малые концентрации облегчают, а большие — тормозят синаптическую передачу. Изменения в обмене ацетилхолина могут привести к нарушению функций мозга. Недостаток его во многом определяет клиническую картину такого опасного нейродегенеративного заболевания, как болезнь Альцгеймера.

М-холинорецепторы (мускариночувствительные).Действуют более медленно и длительно,расположены на внутренних органах рядом с окончаниями парасимпатических постганглионных волокон.Эффекты соотв эффектам парасим системы.То, при дейтсвии фармкологических веществ на М- сужение зрачка,обильное отделение жидкой слюны, потоотделение,спазм бронхов и т.д. Н-холинорецепторы (никотиночувствителтьные) реагируют быстро и непродолжитльно,находятся в преганглионарных волокнах и симп, и парасимп систем.При возбуждении — повышение кровяного давления, возбуждение дыхания,увеличение секреции желез. В зависимости от способности проникать через гематоэнцефалический барьер холинореактивные вещества могут оказывать центральное или периферическое действие.В соотв с воздействием на мускарино- и никотиночувствиетльные синапсы холинореактивные вещества делятся на М-холинолитики или М-холиномиметики и Н-холинолики и Н-холиномиметики.М-холиноммиметики — ацетилхолин. 

Мускарин — имеет токсикологическое действие, содержитсяв мухоморах,применяется только в кспериментах. Ареколин — в плодах ореховой пальмы,проникает через гематонццефалический барьер,обладает центральным действием,прпоявляется судорогами.Ацеклидин и пилокарпин — сужают зрачоки снижают внутриглазное давление. Н-холиномиметики.Никотин-проникает через гематоэнцефалический барьер,в листьях табака,имеет 2 фазы действия (активация или угнетение работы синапсов, сужение периферических сосудов,увеличение секреции желудочного сока и повышение тоеуса бронхов).Лобелин и цитизим — в растениях в семействе колокольчиковых и бобовых,активируют дыхательный центр.М-холинолитики.Атропин — снижение тонуса пищеварительерй системы и секреция пищеварительных соков,блокирует возбуждение,влияет на тонус мышц глаза.Скополамин — в красавке,белене,дурмане,проникает через ГЭБ,центр эффект-кататония(снижение двиг активности).Платифиллин — в крестовнике широколистном,угнетает сосудодвигательный центр. Н-холинолитики (блокируют никотиновые рецепторы,есть в ганглии и рабочем органе).делятся на ганлиоблокаторы(при язве, снижают артериальное давление) и периферические миорелаксаторы(блокируют рецепторы в мышцах,яд курары-в анестезии для снятия судорог). 

19 Вопрос Норадреналин.Альфа и Бета-адренорецепторы, основные структуры мозга в которых норадреналин выступает медиатором.

Норадреналин является предшественником адреналина. По химическому строению норадреналин отличается от него отсутствием метильной группы у атомаазотааминогруппы боковой цепи, его действие как гормона во многом синергично с действием адреналина. Представителем группы средств, возбуждающих альфа- и бета-рецепторы, является также L-НОРАДРЕНАЛИН. На альфа-, бета-рецепторы действует как медиатор; как лекарство, влияет только на альфа-рецепторы. Норадреналин оказывает прямое мощное стимулирующее влияние на альфа-адренорецепторы.Основным эффектом НА является выраженное, но непродолжительное (в течение нескольких минут) повышение артериального давления (АД).

Это обусловлено прямым стимулирующим влиянием норадреналина на альфа-адренорецепторы сосудов и повышением их периферического сопротивления. В отличие от адреналина повышается систолическое, диастолическое и среднее артериальное давление.

Вены под влиянием НА суживаются. Подъем АД настолько существенен, что в ответ на быстро наступающую гипертензию вследствие стимуляции барорецепторов каротидного синуса на фоне НА существенно урежается ритм сердечных сокращений, что является рефлексом с каротидного синуса на центры блуждающих нервов. В соответствии с этим брадикардию, развивающуюся при введении норадреналина, можно предупредить введением атропина.

Под влиянием норадреналина сердечный выброс (минутный объем) или практически не меняется, но ударный объем возрастает.

На гладкие мышцы внутренних органов, обмен веществ и ЦНС препарат оказывает однонаправленное с адреналином действие, но существенно уступает последнему.

Основной путь введения норадреналина — в/в (в ЖКТ — разлагается; п/к — некроз на месте иньекции).

Вводят в/в, капельно, так как действует кратковременно.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ НОРАДРЕНАЛИНА.

Используют при состояниях, сопровождающихся острым падением АД. Чаще всего это травматический шок, обширные хирургические вмешательства.

Рецепторы норадреналина

Выделяют альфа-1, альфа-2 и бета-рецепторы к норадреналину. Каждая группа делится на подгруппы, различающиеся сродством к разным агонистам, антагонистам и, частично, функциями. Альфа-1 и бета-рецепторы могут быть только постсинаптическими и стимулируют аденилатциклазу, альфа-2 могут быть и пост-, и пре-синаптическими, и тормозят аденилатциклазу. Бета-рецепторы стимулируют липолиз.

Все альфа-рецепторы подразделяются на основании сравнительной избирательности и силы эффектов как агонистов, так и антагонистов на альфа-1- и альфа-2-рецепторы. Если альфа-1-адренорецепторы локализованы постсинаптически, то альфа-2-адренорецепторы локализованы на пресинаптических мембранах. Основная роль пресинаптических альфа-2-адренорецепторов заключается в их участии в системе ОБРАТНОЙ ОТРИЦАТЕЛЬНОЙ СВЯЗИ, регулирующей освобождение медиатора норадреналина. Возбуждение этих рецепторов тормозит освобождение норадреналина из варикозных утолщений симпатического волокна.

Среди постсинаптических бета-адренорецепторов выделяют бета -1-адренорецепторы (локализованы в сердце) и бета-2-адренорецепторы (в бронхах, сосудах скелетных мышц, легочных, мозговых и коронарных сосудах, в матке).

Если возбуждение бета-1-рецепторов сердца сопровождается повышением силы и частоты сердечных сокращений, то при стимуляции бета-2-адренорецепторов наблюдается снижение функции органа — расслабление гладкой мускулатуры бронхов. Последнее означает, что бета-2-адренорецепторы, есть классические тормозные адренорецепторы.

Количественное соотношение в разных тканях альфа- и бетарецепторов различно. Преимущественно альфа-рецепторы сосредоточены в кровеносных сосудах кожи и слизистых оболочек, мозга и сосудах брюшной области (почек и кишечника, сфинктерах ЖКТ, трабекулах селезенки).

Как видно, указанные сосуды относятся к разряду емкостных сосудов.

В сердце локализованы приемущественно бета-1-стимулирующие адренорецепторы, в мышцах бронхов, мозговых, коронарных, легочных сосудах в основном находятся бета-2-тормозные адренорецепторы. Такое расположение эволюционно выработано, убегает при возникновении опасности : необходимо расширить бронхи, увеличить просвет сосудов головного мозга, повысить работу сердца.

Действие норадреналина на адренорецепторы кратковременно, так как до 80% выделившегося медиатора быстро захватывается, поглощается посредством активного транспорта окончаниями адренергических волокон. Катаболизм (разрушение) свободного норадреналина осуществляется путем окислительного дезаминирования в адренергических окончаниях и регулируется ферментом моноаминооксидазой (МАО), локализованной в митохондриях и везикулах мембран. Метаболизм выделившегося из нервных окончаний норадреналина осуществляется путем метилирования цитоплазматическим ферментом эффекторных клеток — КАТЕХОЛ-О-МЕТИЛТРАНСФЕРАЗОЙ (КОМТ).

КОМТ есть и в синапсах, есть и в плазме и в ликворе.

Возможности фармакологического воздействия на адренергическую передачу нервных импульсов довольно разнообразны. Направленность действия веществ может быть следующей:

1) влияния на синтез норадреналина;

2) нарушение депонирования норадреналина в везикулах;

3) угнетение ферментативной инактвации норадреналина;

4) влияние на выделение норадреналина из окончаний;

5) нарушение процесса обратного захвата норадреналина пресинаптическими окончаниями;

6) угнетение эктранейронального захвата медиатора;

7) непосредственное воздействие на адренорецепторы эффекторных клеток.

20Вопрос. Дофамин,его роль в передаче нервного импульса в мозговых структурах

Дофамин (допамин, DA) — нейромедиатор, а также гормон, вырабатываемый мозговым веществом надпочечников и другими тканями (например, почками).

Известен как «гормон любви». Вырабатывается в организме влюбленного человека, вызывая так называемую «дофаминовую зависимость». Страдания от неразделенной любви нередко связаны с избытком дофамина в организме человека. Зачастую, в подобных случаях, для вывода излишка дофамина из организма помогают умеренные физические нагрузки.

По химической структуре дофамин относится к биогенными аминами, конкретно к катехоламинами. Дофамин является предшественником норадреналина (и, соответственно, адреналина) в его биосинтезе.

Дофамин как нейромедиатор.

Дофамин является одним из химических факторов внутреннего подкрепления (ФВП).

Как и у большинства таких факторов, у дофамина существуют наркотические аналоги, например, амфетамин, метамфетамин, меткатион. Кокаин вляется ингибитором обратного захвата дофамина. Резерпин блокирует накачку дофамина в пресинаптические везикулы.

Синтезированный нейроном дофамин накапливается в дофаминовых везикулах (т. н. «синаптическом пузырьке»).

Этот процесс является протон-сопряжённым транспортом. В везикулу с помощью протон-зависимой АТФазы закачиваются ионы H+. При выходе протонов по градиенту в везикулу поступают молекулы дофамина.

Далее дофамин выводится в синаптическую щель. Часть его участвует в передаче нервного импульса, воздействуя на клеточные D-рецепторы постсинаптической мембраны, а часть возвращается в пресинаптический нейрон с помощью обратного захвата. Ауторегуляция выхода дофамина обеспечивается D2 и D3 рецепторами на мембране пресинаптического нейрона. Обратный захват производится транспортером дофамина. Вернувшийся в клетку медиатор расщепляется с помощью моноаминооксидазы (МАО) и, далее, альдегиддегидрогеназы и катехол-О-метил-трансферазы до гомованилиновой кислоты.