ОСНОВЫ ТЕОРИИ ИЗМЕРЕНИЙ
Измерения. Виды измерений
Измерением называют совокупность операций, выполняемых с помощью технических средств, хранящих единицу величины и позволяющих сопоставить с нею измеряемую величину.
Широкое распространение получило определение: «Измерение — познавательный процесс, заключающийся в сравнении путем физического эксперимента данной величины с известной величиной, принятой за единицу сравнения».
В стандарте дано определение более лаконичное, но содержащее ту же мысль: «Измерение — нахождение значения физической величины опытным путем с помощью специальных технических средств».
Сравнение неизвестного размера с известным и выражение первого через второй в кратном или дольном отношении человеку приходится делать в жизни бесчисленное количество раз. Сравнивая в уме высоту людей с представлением о единице длины в Международной системе, мы измеряем их рост на глаз с точностью до нескольких сантиметров. Наверное, многим из нас нетрудно определить, с какой примерно скоростью движется автомобиль. Результаты таких измерений в значительной мере зависят от квалификации тех, кто их выполняет. Штангист, например, довольно точно может определить массу поднимаемой штанги. В этом случае информация о размерах тех или иных физических величин, доставляемая с помощью органов чувств, сравнивается с представлением о соответствующих единицах, и неизвестные размеры выражаются через эти единицы в кратном или дольном отношении, т.е. выполняется измерение по шкале отношений.
Измерения, основанные на использовании органов чувств человека (осязания, обоняния, зрения, слуха и вкуса), называются органолептическими.
Природа в разной степени наделила людей способностями к органолептическим измерениям по шкале отношений. Частоту звуковых колебаний, например, могут определить лишь те немногие, кто обладает абсолютным слухом. Большинство же воспринимает разность звуковых частот в тонах и полутонах, т.е. способно к измерению частоты звука только по шкале интервалов. Измерения по шкале интервалов, будучи менее совершенными, чем по шкале отношений, могут выполняться и без участия органов чувств. Измерение времени, например, или гравитации (космонавтами) основывается на ощущениях. Еще менее совершенные измерения по шкале порядка строятся на впечатлениях. К ним относятся конкурсы мастеров искусств (скульпторов, художников, поэтов, композиторов), соревнования спортсменов по фигурному катанию на коньках и т.п. Измерения, основанные на интуиции, называются эвристическими. При всех таких измерениях кроме ранжирования (расстановки измеряемых величин в порядке убывания или возрастания их размеров) широко применяется способ попарного сопоставления, когда измеряемые величины сначала сравниваются между собой попарно и для каждой пары результат сравнения выражается в форме «больше — меньше» или «лучше — хуже». Затем ранжирование производится на основании результатов попарного сопоставления.
ИЗМЕРЕНИЯ. ШКАЛЫ ИЗМЕРЕНИЯ
... решения. Анализ различий и сдвигов на уровне шкалы наименований: Фи-критерий Фишера (ФиФ) На примере анализа различий ... качеств, именно дипломатичность. Результаты записаны в сырых баллах. Порядковая шкала. 26-31 год 32-37 38-42 46-52 ... Анализ различий и сдвигов на уровне номинальной шкалы. Fi-Fish Ограничения: n1,n2>=5; max отсутствует. Рассмотрим на примере анализа ...
Иногда попарное сопоставление проводят более тщательно, учитывая равноценность.
Особое место в измерениях по шкале порядка занимает сравнение с размером, равным нулю. Такое измерение называется обнаружением, а результатом измерения является решение о том, отлично от нуля значение измеряемой величины или нет.
Человек — высокосовершенное «средство измерения». Однако вполне объективными могут считаться только измерения, выполняемые без участия человека.
Измерения, выполняемые с помощью специальных технических средств, называются инструментальными. Среди них могут быть автоматизированные и автоматические. При автоматизированных измерениях роль человека полностью не исключена. Он может, например, проводить съем данных с отсчетного устройства измерительного прибора (шкалы со стрелкой или цифрового табло), вести их регистрацию в журнале, обрабатывать в уме или с помощью вычислительных средств. На качество этих операций влияет настроение человека, степень его сосредоточенности, серьезности, мера ответственности за порученное дело, уровень профессиональной подготовки, т.е. элемент субъективизма при автоматизированных измерениях остается. Автоматические измерения выполняются без участия человека. Результат их представляется в форме документа и является совершенно объективным.
По способу получения числового значения измеряемой величины все измерения делят на четыре основных вида: прямые, косвенные, совокупные и совместные.
Прямые измерения — это измерения, при которых искомое значение величины находят непосредственным сравнением физической величины с ее мерой. Например, при определении длины предмета линейкой происходит сравнение искомой величины (количественного выражения значения длины) с мерой, т.е. линейкой. К прямым измерениям можно отнести и измерение температуры термометром, электрического напряжения — вольтметром и т.д. Прямые измерения — основа более сложных видов измерений.
Косвенные измерения отличаются от прямых тем, что искомое значение величины устанавливают по результатам прямых измерений таких величин, которые связаны с искомой определенной зависимостью. Так, используя известную функциональную взаимосвязь, можно рассчитать электрическое сопротивление по результатам измерений падения напряжения и силы тока. Значения некоторых величин легче и проще находить путем косвенных измерений, так как прямые измерения иногда практически невозможно осуществить. Например, плотность твердого тела обычно определяют по результатам измерений объема и массы.
Совокупными измерениями называют такие, в которых значения измеряемых величин находят по данным повторных измерений одной или нескольких одноименных величин при различных сочетаниях мер или этих величин. Результаты совокупных измерений находят путем решения системы уравнений, составляемых по результатам нескольких прямых измерений.
Совместные измерения — это одновременные измерения (прямые или косвенные) двух или более неоднородных физических величин для определения функциональной зависимости между ними. Например, определение зависимости длины тела от температуры.
По характеру изменения измеряемой величины в процессе измерений различают статистические, динамические и статические измерения.
Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т.д.
Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения. Например, усилия, развиваемые спортсменом в опорный период при прыжках в длину с разбега.
Статические измерения имеют место тогда, когда измеряемая величина практически постоянна (длина прыжка в длину, дальность полета снаряда, вес ядра и т.д.).
По количеству измерительной информации измерения бывают однократные и многократные.
Однократные измерения — это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин. Так как однократные измерения всегда сопряжены с погрешностями, следует проводить не менее трех однократных измерений и конечный результат находить как среднее арифметическое значение.
Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Обычно минимальное число измерений в данном случае больше трех. Преимущество многократных измерений — в значительном снижении влияний случайных факторов на погрешность измерения.
По отношению к основным единицам измерения делят на абсолютные и относительные. Абсолютными измерениями называют такие, при которых используются прямое измерение одной (иногда нескольких) основной величины и физическая константа. Так, в известной формуле Эйнштейна Е=м*с масса (м) — основная физическая величина, которая может быть измерена прямым путем (взвешиванием), а скорость света (с) — физическая константа.
Относительные измерения базируются на установлении отношения измеряемой величины к однородной, применяемой в качестве единицы. Понятно, что искомое значение зависит от используемой единицы измерения.
В метрологической практике основой для измерения физической величины служит шкала измерений — упорядоченная совокупность значений физической величины (табл. 5).
Таблица 5. Характеристики и примеры шкал измерений
Шкала
|
Характеристики
|
Математические методы
|
Примеры
|
|
Наименований
|
Объекты сгруппированы, а группы обозначены номерами. То, что номер одной группы больше или меньше другой, еще ничего не говорит об их свойствах, за исключением того, что они различаются
|
Число случаев. Мода. Тетрахорические и полихорические коэффициенты корреляции
|
Номер спортсмена, амплуа и т. д.
|
|
Порядка
|
Числа, присвоенные объектам, отражают количество свойства, принадлежащего им. Возможно установление соотношения «больше» или «меньше»
|
Медиана. Ранговая корреляция. Ранговые критерии. Проверка гипотез не параметрической статистикой
|
Результаты ранжирования спортсменов в тесте
|
|
Интервалов
|
Существует единица измерений, при помощи которой объекты можно не только упорядочить, но и приписать им числа так, чтобы равные разности отражали разные различия в количестве измеряемого свойства. Нулевая точка произвольна и не указывает на отсутствие свойства
|
Все методы статистики, кроме определения отношений
|
Температура тела, суставные углы и т.д.
|
|
Отноше- ний
|
Числа, присвоенные предметам, обладают всеми свойствами ин- тервальной шкалы. На шкале существует абсолютный нуль, который указывает на полное отсутствие данного свойства у объекта. Отношение чисел, при- своенных объектам после изме- рений, отражает количествен- ные отношения измеряемого свойства
|
Все методы статистики
|
Длина и масса тела, сила движений, ускорение и т. п.
|
|
Количественной характеристикой измеряемой величины служит ее размер. Получение информации о размере физической или нефизической величины является содержанием любого измерения. Простейший способ получения такой информации, позволяющий составить некоторое представление о размере измеряемой величины, состоит в сравнении его с другим по принципу «что больше (меньше)?» или «что лучше (хуже)?» Более подробной информации о том, на сколько больше (меньше) или во сколько раз лучше (хуже), иногда даже не требуется. Подобным образом решаются многие задачи выбора: кто сильнее? что нагляднее? как проще? и т.п. При этом число сравниваемых между собой размеров может быть достаточно большим. Расположенные в порядке возрастания или убывания размеры измеряемых величин образуют шкалу порядка. Так, например, на многих конкурсах и соревнованиях мастерство исполнителей и спортсменов (или целых команд) определяется их местом, занятым в итоговой таблице. Эта таблица является шкалой порядка — формой представления измерительной информации, отражающей тот факт, что мастерство одних выше мастерства других, хотя и неизвестно, в какой степени (на сколько, или во сколько раз).
Построив людей по росту, можно, пользуясь шкалой порядка, сделать вывод о том, кто выше кого, однако сказать на сколько выше, или во сколько раз — нельзя. Расстановка размеров в порядке их возрастания или убывания с целью получения измерительной информации по шкале порядка называется ранжированием.
Для облегчения измерений по шкале порядка некоторые точки на ней можно зафиксировать в качестве опорных (реперных).
Знания, например, измеряют по реперной шкале порядка, имеющей следующий вид: неудовлетворительно, удовлетворительно, хорошо, отлично. Точками реперной шкалы могут быть цифры, называемые баллами. Например, интенсивность землетрясений измеряется по двенадцатибальной международной сейсмической шкале МSК-64 (табл. 6), сила ветра — по шкале Бофорта (табл, 7).
Таблица 6. Международная сейсмическая шкала МЗК для измерения силы землетрясений
Сила землетрясения, баллы
|
Название
|
Признаки
|
I
|
1езаметное
|
Отмечается только сейсмическими приборами
|
2
|
Очень слабое
|
Ощущается отдельными людьми, находящимися в состоянии покоя
|
3
|
Слабое
|
Ощущается лишь небольшой частью населения
|
4
|
Умеренное
|
Распознается по мелкому дребезжанию и колебанию предметов, посуды, оконных стекол, скрипу дверей и стен
|
5
|
Сильное
|
Ощущается всеми. Картины падают со стен, откалываются куски штукатурки, легкое повреждение зданий
|
6
|
Очень сильное
|
Трещины в стенах каменных домов. Антисейсмические, а также деревянные постройки остаются невредимыми
|
7
|
Разрушительное
|
Трещины на крутых склонах и на сырой почве. Памятники сдвигаются с места или опрокидываются. Дома сильно повреждаются
|
8
|
Опустошительное
|
Сильное повреждение и разрушение каменных домов
|
9
|
Уничтожающее
|
Крупные трещины в почве. Оползни и обвалы. Разрушение каменных построек, искривление железнодорожных рельсов
|
10
|
Катастрофа
|
Широкие трещины в земле. Многочисленные оползни и обвалы. Каменные дома совершенно разрушаются
|
11
|
Сильная катастрофа
|
Изменения в почве достигают огромных размеров. Многочисленные обвалы, оползни, трещины. Возникновение водопадов, подпруд на озерах. Отклонение течения рек. Ни одно сооружение не выдерживает
|
Таблица 7. Шкала Бофорта для измерения силы ветра
Сила ветра, баллы
|
Название
|
Признаки
|
0
|
Штиль
|
Дым идет вертикально
|
1
|
Тихий
|
Дым идет слегка наклонно
|
2
|
Легкий
|
Ощущается лицом, шелестят листья
|
3
|
Слабый
|
Развеваются флаги
|
4
|
Умеренный
|
Поднимается пыль
|
5
|
Свежий
|
Вызывает волны на воде
|
6
|
Сильный
|
Свистит в вантах, гудят провода
|
7
|
Крепкий
|
На волнах образуется пена
|
8
|
Очень крепкий
|
Трудно идти против ветра
|
9
|
Шторм
|
Срывает черепицу
|
10
|
Сильный шторм
|
Вырывает деревья с корнем
|
11
|
Жестокий шторм
|
Большие разрушения
|
12
|
Ураган
|
Опустошительное действие
|
Особенно широкое распространение реперные шкалы получили в гуманитарных науках, спорте, искусстве и других областях, где измерения еще не достигли высокого совершенства. В спорте шкала порядка чаще всего используется в художественной гимнастике, фигурном катании, единоборствах и т.п. Так, в художественной гимнастике артистизм спортсменок устанавливается в виде рангов: ранг победителя — 1, второе место — 2 и т.д.
Недостаток реперных шкал — неопределенность интервалов между реперными точками. Поэтому баллы нельзя складывать, вычитать, перемножать, делить и т.д. Более совершенными в этом отношении являются шкалы, составленные из строго определенных интервалов. Общепринято, например, измерение времени по шкале, разбитой на интервалы, равные периоду обращения Земли вокруг Солнца (летоисчисление).
Эти интервалы (годы) делятся на более мелкие (сутки), равные периоду обращения Земли вокруг своей оси. Сутки, в свою очередь, делятся на часы, часы — на минуты, минуты — на секунды. Такая шкала называется шкалой интервалов (разностей).
По шкале интервалов можно уже судить не только о том, что один размер больше другого, но и о том, на сколько больше, т.е. на шкале интервалов определены такие математические действия, как сложение и вычитание. Данные шкалы интервалов дают ответ на вопрос «на сколько больше?», но не позволяют утверждать, что одно значение измеренной величины во столько-то раз больше или меньше другого. Например, если температура повысилась с 10 до 20°С, то нельзя сказать, что стало в два раза теплее; если в соревнованиях по художественной гимнастике при определении артистичности между второй и четвертой спортсменками — два ранга, то это вовсе не означает, что вторая вдвое артистичнее четвертой. Это объясняется тем, что на шкале интервалов известен масштаб, а начало отсчета может быть выбрано произвольно.
Если в качестве одной из двух реперных точек выбрать такую, в которой размер не принимается равным нулю (что приводит к появлению отрицательных значений), а равен нулю на самом деле, то по такой шкале уже можно отсчитывать абсолютное значение размера и определять не только на сколько один размер больше или меньше другого, но и во сколько раз он больше или меньше. Эта шкала называется шкалой отношений.
Шкала отношений является наиболее совершенной из всех рассматриваемых шкал. Но, к сожалению, построение шкалы отношений возможно не всегда. Время, например, может измеряться только по шкале интервалов. В спорте по шкале отношений измеряют расстояние, силу, скорость и десятки других переменных.
В зависимости от того, на какие интервалы разбита шкала, один и тот же размер представляется по-разному. Например, 0,001 км; 1 м; 100 см; 1000 мм — четыре варианта представления одного и того же размера. Их называют значениями измеряемой величины. Таким образом, значение измеряемой величины — это выражение ее размера в определенных единицах измерения. Входящее в него отвлеченное число называется числовым значением. Оно показывает, на сколько единиц измеряемый размер больше нуля или во сколько раз он больше единицы (измерения).
Так, измеряя длину прыжка, мы узнаем, во сколько раз эта длина больше длины другого тела, принятого за единицу длины (метровой линейки в частном случае); взвешивая штангу, определяем отношение ее массы к массе другого тела — единичной гири «килограмма» и т. п.
Самой простой из всех шкал является шкала наименований, или номинальная шкала (от латинского слова «номе» — имя).
В этой шкале нет отношений типа «больше — меньше». Здесь речь идет о группировке объектов, идентичных по определенному признаку, и о присвоении им обозначений в виде цифр, которые служат для обнаружения и различения изучаемых объектов (например, нумерация игроков в командах).
При использовании шкалы наименований могут проводиться только некоторые математические операции. Например, можно подсчитывать, сколько раз (как часто) встречается то или иное число.
Основной постулат метрологии
Любое измерение по шкале отношений предполагает сравнение неизвестного размера с известным и выражение первого через второй в кратном или дольном отношении. В математическом выражении процедура сравнения неизвестного значения с известным и выражения первого через второе в кратном или дольном отношении запишется так:
На практике не всегда неизвестный размер может быть представлен для сравнения с единицей. Жидкости и сыпучие вещества, например, предъявляются на взвешивание в таре. Другой пример, когда очень маленькие линейные размеры могут быть измерены только после увеличения их микроскопом или другим прибором. В первом случае процедуру измерения можно выразить отношением
во втором
где v — масса тары, а п — коэффициент увеличения. Само сравнение, в свою очередь, происходит под влиянием множества случайных и неслучайных, аддитивных (от лат. айШуак — прибавляемый) и мультипликативных (от лат. ггшШрНсо — умножаю) факторов, точный учет которых невозможен, а результат совместного воздействия непредсказуем. Если мы ограничимся для простоты рассмотрения только аддитивными воздействиями, совместное влияние которых можно учесть случайным слагаемым ц, то получим следующее уравнение измерения по шкале отношении:
Это уравнение выражает действие, т.е. процедуру сравнения в реальных условиях, которая и является измерением. Отличительная особенность такой измерительной процедуры — то, что при ее повторении из-за случайного характера Г| отсчет по шкале отношений X получается каждый раз разным. Это фундаментальное положение — закон природы. На основании громадного опыта практических измерений сформулировано следующее утверждение, называемое основным постулатом метрологии: отсчет является случайным числом. На этом постулате основана вся метрология.
Полученное уравнение является математической моделью измерения по шкале отношений.
Аксиомы метрологии. Первая аксиома: без априорной информации измерение невозможно. Эта аксиома метрологии относится к ситуации перед измерением и говорит о том, что если об интересующем нас свойстве мы ничего не знаем, то ничего и не узнаем. Вместе с тем, если о нем известно все, то измерение не нужно. Таким образом, измерение обусловлено дефицитом количественной информации о том или ином свойстве объекта или явления и направлено на его уменьшение.
Вторая аксиома: измерение есть не что иное, как сравнение. Эта аксиома относится к процедуре измерения и говорит о том, что нет иного экспериментального способа получения информации о каких бы то ни было размерах, кроме как путем сравнения их между собой. Народная мудрость, говорящая о том, что «все познается в сравнении», перекликается здесь с трактовкой измерения Л.Эйлером, данной свыше 200 лет назад: «Невозможно определить или измерить одну величину иначе как приняв в качестве известной другую величину этого же рода и указав соотношение, в котором она находится с ней».
Третья аксиома: результат измерения без округления является случайным. Эта аксиома относится к ситуации после измерения и отражает тот факт, что на результат реальной измерительной процедуры всегда оказывают влияние множество разнообразных, в том числе случайных, факторов, точный учет которых в принципе невозможен, а окончательный итог непредсказуем. Вследствие этого, как показывает практика, при повторных измерениях одного и того же постоянного размера либо при одновременном измерении его разными лицами, разными методами и средствами получаются неодинаковые результаты, если только не производить их округления (огрубления).
Это отдельные значения случайного по своей природе результата измерения.
Факторы, влияющие на качество измерений
Получение отсчета (либо принятие решения) — основная измерительная процедура. Однако во внимание должно приниматься еще множество факторов, учет которых представляет иногда довольно сложную задачу. При подготовке и проведении высокоточных измерений в метрологической практике учитывается влияние:
— объекта измерения;
— субъекта (эксперта, или экспериментатора);
— способа измерения;
— средства измерения;
— условий измерения.
Объект измерения должен быть достаточно изучен. Перед измерением необходимо представить себе модель исследуемого объекта, которая в дальнейшем, по мере поступления измерительной информации, может изменяться и уточняться. Чем полнее модель соответствует измеряемому объекту или исследуемому явлению, тем точнее измерительный эксперимент.
Для измерений в спорте объект измерения — один из самых сложных моментов, потому что представляет собой переплетение многих взаимосвязанных параметров с большими индивидуальными «разбросами» измеряемых величин (на них, в свою очередь, оказывают влияние биологические «внешние» и «внутренние», географические, генетические, психологические, социально-экономические и другие факторы).
Эксперт, или экспериментатор, вносит в процесс измерения элемент субъективизма, который по возможности должен быть уменьшен. Он зависит от квалификации измерителя, его психофизиологического состояния, соблюдения эргономических требований при измерениях и многого другого. Все эти факторы заслуживают внимания. К измерениям допускаются лица, прошедшие специальную подготовку, имеющие соответствующие знания, умения и практические навыки. В ответственных случаях их действия должны быть строго регламентированы.
Влияние средства измерений на измеряемую величину во многих случаях проявляется как возмущающий фактор. Включение электроизмерительных приборов приводит к перераспределению токов и напряжений в электрических цепях и тем самым оказывает влияние на измеряемые величины.
К числу влияющих факторов относятся также условия измерений. Сюда входят температура окружающей среды, влажность, атмосферное давление, электрические и магнитные поля, напряжение в сети питания, тряска, вибрация и многое другое.
Общая характеристика влияющих факторов может быть дана под разными углами зрения: внешние и внутренние, случайные и неслучайные, последние — постоянные и меняющиеся во времени и т.д. и т.п. Один из вариантов классификации влияющих факторов приведен ниже.
Классификация влияющих факторов
1. Качество и количество априорной информации
2. Неадекватность модели объекта
3. Несовершенство метода измерений
4. Несовершенство средства измерений
1. Неправильная установка средства измерений
2. Влияние средства измерений на объект
3. Климатические
4. Электрические и магнитные
5. Механические и акустические
6. Ионизирующие излучения и др.
7. Случайные внешние помехи и внутренние шумы
8. Квалификация и психофизическое состояние персонала
1. Качество алгоритма обработки данных
2. Несовершенство средств обработки данных
3. Квалификация и психофизическое состояние персонала
Априорные факторы (а) включают в себя:
1. Влияние на результат измерения качества и количества информации об измеряемом объекте. Чем ее больше, чем выше ее качество — тем точнее результат измерения. Накопление априорной информации — один из путей повышения точности результатов измерений.
2. Влияние того очевидного факта, что модель не может в точности соответствовать объекту.
3. Влияние теоретических допущений и упрощений, лежащих в основе метода измерений.
4. Влияние несовершенства измерительного инструмента или прибора, которое может быть как следствием некачественного его изготовления, так и результатом длительной эксплуатации. Отметка шкал показывающих приборов, например, не вполне точно соответствует измеряемым значениям. В процессе эксплуатации происходит старение материалов, возникает износ механизмов и деталей, развиваются люфты, зазоры, случаются скрытые метрологические отказы (выходы метрологических характеристик за пределы установленных для них норм).
Понятно, что результат измерения находится в прямой зависимости от этих факторов.
В процессе измерения (б):
1. Неправильная установка и подготовка к работе средств измерений, принцип действия которых в той или иной степени связан с механическим равновесием, приводит к искажению их показаний. К подобным средствам измерений относятся приборы, в конструкцию которых входит маятник, приборы с подвешенной подвижной частью и др. Многие из них для установки в правильное положение снабжаются уровнями (отвесами, ватерпасами).
2. Влияние средства измерений на объект может до неузнаваемости изменить реальную картину. Например, перераспределение токов и напряжений в электрических цепях при подключении электроизмерительных приборов иногда оказывает заметное влияние на результат измерения.
3. Влияние климатических (температура окружающей среды, относительная влажность воздуха, атмосферное давление), электрических и магнитных (колебания силы электрического тока или напряжения в электрической сети, частоты переменного электрического тока, постоянные и переменные магнитные поля и др.), механических и акустических (вибрации, ударные нагрузки, сотрясения) факторов, а также ионизирующих излучений, газового состава атмосферы и т.п. принято относить к условиям измерений. Такие условия, влиянием которых на результат измерения можно пренебречь, называют нормальными.
4. Случайные внешние помехи и внутренние шумы измерительных приборов оказывают непредсказуемое совместное влияние на результат измерения, вследствие чего он имеет стохастическую природу.
5. Квалификация и психофизическое состояние персонала (или оператора), выполняющего измерение (знания, умения и навыки, сосредоточенность, внимательность, уравновешенность, добросовестность, самочувствие, острота зрения и многое другое), имеют большое значение.
После измерения — апостериорные факторы (в):
1. От правильной обработки экспериментальных данных во многом зависит результат измерения.
2. Технические средства, используемые для обработки экспериментальных данных, не дают новой измерительной информации. Они лишь помогают с большим или меньшим успехом извлекать ее из экспериментальных данных и тем самым оказывают влияние на результат измерения.
3. Неграмотные или безответственные действия персонала (оператора) при обработке экспериментальных данных могут свести на нет любые усилия, затраченные на их получение.
Приведенные классификации далеко не исчерпывают всего многообразия факторов, влияющих на результат измерения.