1. Философские аспекты моделирования как метода познания окружающего мира
1.1. Гносеологическая специфика модели и ее определение.
Слово «модель» произошло от латинского слова «modelium», означает: мера, способ и т.д. Под моделью в широком смысле понимают мысленно или практически созданную структуру, воспроизводящую часть действительности в упрощенной и наглядной форме. Во многих дискуссиях, посвященных гносеологической роли и методологическому значению моделирования, этот термин употреблялся как синоним познания, теории, гипотезы и т.п. Например, часто модель употребляется как синоним теории в случае, когда теория еще недостаточно разработана, в ней мало дедуктивных шагов, много неясностей. Иногда этот термин употребляют в качестве синонима любой количественной теории, математического описания. Несостоятельность такого употребления с гносеологической точки зрения, по мнению В.А. IIIтоффа, в том, «что такое словоупотребление не вызывает никаких новых гносеологических проблем, которые были бы специфичны для моделей». Существенным признаком, отличающим модель от теории является не уровень упрощения, не степень абстракции, и следовательно, не количество этих достигнутых абстракций и отвлечении, а способ выражения этих абстракций, упрощений и отвлечении, характерный для модели.
Наиболее полное определение понятия «модель» дает В.А. IIIтофф в своей книге «Моделирование и философия»: «Под моделью понимается такая мысленно представляемая или материально реализуемая система, которая отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает нам новую информацию об этом объекте».
О кибернетическом моделировании и моделировании мыслительной деятельности человека.
2.2.1. Особенности кибернетического моделирования.
В современном научном знании весьма широко распространена тенденция построения кибернетических моделей объектов самых различных классов. Кибернетическое моделирование используется и как общее эвристическое средство, и как искусственный организм, и как система-заменитель, и в функции демонстрационной. Использование кибернетической теории связи и управления для построения моделей в соответствующих областях основывается на максимальной общности ее законов и принципов: для объектов живой природы, социальных систем и технических систем. Характеризуя процесс кибернетического моделирования , обращают внимание на следующие обстоятельства. Модель, будучи аналогом исследуемого явления, никогда не может достигнуть степени сложности последнего. При построении модели прибегают к известным упрощениям, цель которых – стремление отобразить не весь объект, а с максимальной полнотой охарактеризовать некоторый его «срез». Задача заключается в том, чтобы путем введения ряда упрощающих допущений выделить важные для исследования свойства. Создавая кибернетические модели, выделяют информационно — управленческие свойства. Все иные стороны этого объекта остаются вне рассмотрения.
Теория развития в гештальт-подходе
... Несмотря на всю сложность, эта область представляется более перспективной для развития гештальт-теории. Поэтому в этом направлении и начнем двигаться. Для более последовательного и ... его функциями ограничен соответствующим личным опытом родителей с релевантными ему деформациями и моделями психических проявлений. Например, ребенок не имеет возможности маркировать возникающее возбуждение как нежность ...
2.2.2. Моделирование мыслительной деятельности человека.
Для исследования мозга важны методы классической физиологии высшей нервной деятельности, морфофизиологии, электрофизиологии, биохимии и т.д. Однако возникла потребность в новых методах, раскрывающих деятельность мозга с иной стороны – с точки зрения закономерностей процессов управления и переработки информации.
Попытки системного исследования мозга не новы. Еще Н.М.Сеченов поставил задачу вскрыть сущность механизма деятельности мозга путем отыскания лежащих в основе этой деятельности принципов. Им был открыт один из них – принцип рефлексов. И.П.Павлов исследовал принципы управления динамикой высших нервных центров, анализа и синтеза, поступающих из вне сигналов и показал, каковы особенности деятельности мозга при различных состояниях последнего. Для изучения мозга как сложной функциональной системы важное значение приобретает метод моделирования, позволяющий вскрыть структуру мозга, форму связей нейронов и различных участков мозга между собой, принципы нейронной организации, закономерности переработки, передачи, хранения и кодирования информации в мозге и т.д. Использование ЭВМ в моделировании деятельности мозга позволяет отражать процессы в их динамике, но у этого метода в данном приложении есть свои сильные и слабые стороны. Наряду с общими чертами, присущими мозгу и моделирующему его работу устройству, такими, как:
- материальность;
- закономерный характер всех процессов;
- общность некоторых форм движения материи;
- отражение;
- принадлежность к классу самоорганизующихся динамических систем, в которых заложены:
- принцип обратной связи;
- структурно — функциональная аналогия;
- способность накапливать информацию
Есть существенные отличия, такие как:
- моделирующему устройству присущи лишь низшие формы движения – физическое, химическое, а мозгу кроме того – социальное, биологическое;
- процесс отражения в мозге человека проявляется в субъективно-сознательном восприятии внешних воздействий. Мышление возникает в результате взаимодействия субъекта познания с объектом в условиях социальной среды;
- В языке человека и машины. Язык человека носит понятийный характер. Свойства предметов и явлений обобщаются с помощью языка. Моделирующее устройство имеет дело с электрическими импульсами, которые соотнесены человеком с буквами, числами. Таким образом, машина «говорит» не на понятийном языке, а на системе правил, которая по своему характеру является формальной, не имеющей предметного содержания.
Использование математических методов при анализе процессов отражательной деятельности мозга стало возможным благодаря некоторым допущениям, сформулированным Маккаллоком и Питтсом.
Анатомо-физиологическое представительство в мозге психических ...
... как психофизиологического процесса, предполагает согласованную, координированную деятельность сразу нескольких анализаторов. В зависимости ... того же нейрона коры головного мозга (или одного и тoго же нейрона более высокого ... корковые зоны основных систем анализаторов человека, работа которых совместно с органами ... мозга. Это позволяет многократно анализировать одну и ту же информацию с разных сторон, ...
В их основе – абстрагирование от свойств естественного нейрона, от характера обмена веществ и т.д. – нейрон рассматривается с чисто функциональной стороны.
Согласно определению Мак-Каллока и Питтса формальный нейрон -это элемент, обладающий следующими свойствами:
Он работает по принципу «все или ничего»;
Он может находиться в одном из двух устойчивых состояний;
Для возбуждения нейрона необходимо возбудить некоторое количество сигналов, не зависящих от предыдущего состояния нейрона;
Имеет место задержка прохождения сигналов в синапсах в течение некоторого времени ;
Имеются два вида входов: возбуждающие и тормозящие;
Порог возбуждения предполагается неизменным;
Возбуждение любого тормозящего синапса предотвращает возбуждение нейрона, независимо от числа возбужденных сигналов.
Искусственный нейрон, смоделированный Мак-Каллоком и Питтсом, имитирует в первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, аналогичный синаптической силе, и все произведения суммируются, определяя уровень активации возбуждения нейрона.
Существующие модели, имитирующие деятельность мозга (Ферли, Кларка, Неймана, Комбертсона, Уолтера, Джоржа, Шеннона, Аттли, Берля и других) отвлечены от качественной специфики естественных нейронов. Однако с точки зрения изучения функциональной стороны деятельности мозга это оказывается несущественным.
Существует ряд подходов к изучению мозговой деятельности:
теория автоматического регулирования(живые системы рассматриваются в качестве своеобразного идеального объекта)
информационный
Его основные принципы:
а) выделение информационных связей внутри системы
б) выделение сигнала из шума
в) вероятностный характер
Успехи, полученные при изучении деятельности мозга в информационном аспекте на основе моделирования, создали иллюзию, что проблема закономерностей функционирования мозга может быть решена лишь с помощью этого метода. Однако, любая модель связана с упрощением, в частности:
не все функции и специфические свойства учитываются
отвлечение от социального, нейродинамического характера.
Таким образом, делается вывод о критическом отношении к данному методу (нельзя переоценивать его возможности, но вместе с тем, необходимо его широкое применение в данной области с учетом разумных ограничений).
Общая характеристика сенсорных систем. Сомато-сенсорная система, ...
... на рецепторы ноцицептивной, антиноцицептивной и лимбической систем мозга. Физиологические основы обезболивания. Клинико-физиологический аспект. Общая характеристика сенсорных систем Сенсорные системы - это совокупность взаимосвязанных ... неинкапсулированными. Но всегда этот рецептор - разветвление дендритов чувствительного нейрона, в которых возникают и суммируются РП, а в теле самого ...
Проблемы экспертных систем, искусственного интеллекта и нейросетей
Экспертными системами принято называть те или иные программные средства, выполняющие те или иные аналитические функции. В зависимости от уровня и способа решения задач они делятся на следующие группы:
Экспертные системы, основанные на правилах.Основная их отличительная черта состоит в том, что решения, вырабатываемые данными системами, производятся на основе жестких правил – ранее установленных знаний в предметной области. Эти оценки и модели встроены в систему и правильность решений, вырабатываемых системой, находится в прямой зависимости от адекватности этих оценок или моделей.
Экспертные системы, основанные на принципах.Данные экспертные системы появились в результате стремления преодолеть недостатки экспертных систем, основанных на жестких моделях. Основным недостатком теоретических моделей является то, что во-первых входные данные в них должны быть определены посредством детерминирования количественных характеристик, с другой стороны в таких моделях все выводы делаются на основе жестких правил типа «если верно А, то верно Б». Адекватность таких моделей зависит от адекватности данного правила для данной предметной области. Можно сказать, что экспертные системы, основанные на правилах, базируются на формальной логике с законом исключения третьего. Нечеткая логика представляет собой область математики, применение которой позволяет сводить описание сложных предметных областей к набору основных принципов, способных управлять всей предметной областью в некоторых заданных рамках. Нечеткое правило, которое должно пониматься как принцип, а не закон.
Экспертные системы, основанные на примерах.Рассмотренные выше экспертные системы можно в целом охарактеризовать как дедуктивные, то есть частные выводы в них делаются на основе общих закономерностей, выраженных в виде четких или нечетких правил. Экспертные системы, основанные на примерах, характеризуются как индуктивные, то есть общие заключения делаются только на основе большого количества частных примерах. К таким системам можно отнести нейросетевые пакеты. Заметим, что нейросеть предназначена главным образом для того, чтобы на основе анализа большого объема информации, представленной в виде набора частных случаев, выявить общие закономерности которые в свою очередь впоследствии применяются к новым аналогичным ситуациям.
Экспертные системы, основанные на имитационном моделировании.Данные экспертные системы позволяют при исследовании функционирования сложных систем составить модель на основе имеющихся данных и экспертных оценок и затем на основе свойств данной модели протестировать процесс функционирования данной системы, вводя в модель те или иные данные с целью получения оптимальных выходных характеристик.
Особое место среди экспертных систем занимают системы искусственного интеллекта. Проблема искусственного интеллекта занимает очень большое место в практике сознания и использования вычислительной техники. С ней связано много вопросов и чисто гносеологического характера. Академик Н.Н. Моисеев считает, что ни сегодня, ни в обозримом будущем, нет и не будет никаких оснований говорить о возможности появления искусственных систем, которые представляли бы новую, более совершенную форму организации материи. Нет никаких оснований считать, что машина сама по себе превратится в свехрчеловека и «отменит» человечество в качестве пройденного, «устаревшего» уровня организации сознания и материи. Знаменитый Терминатор останется продуктом фантастики. Моисеев уверен, что вычислительная техника и средства искусственного интеллекта, как бы они не развивались в дальнейшем, все равно по прежнему будут оставаться плодом человеческого разума и рук и по прежнему будут служить целям человека.
Модели психики в системах искусственного интеллекта творчество и алгоритмы
... в реализуемых ею программах, с мышлением человека. Если система решает задачи, которые человек обычно решает посредством своего интеллекта, то мы имеем дело с системой искусственного интеллекта. Однако это ограничение недостаточно. Создание традиционных ...
Нейросетевые технологии –одна из разновидностей систем искусственного интеллекта. Понятиянейпронная сеть, нейроматематика, нейроимитатор все шире входят в нашу жизнь, становятся привычныс и эффективным инструментом для решения многих научно-технических задач. Основой нейронной сети (НС) являются искусственные нейроны, описанные в предыдущем пункте. Тем НС – совокупность нейронов, определенных образом соединенных друг с другом и внешней средой. В основу искусственных нейронных сетей положены следующие черты живых нейронных сетей, позволяющие им хорошо справляться с нерегулярными задачами:
простой обрабатывающий элемент – нейрон;
большое количество нейронов, участвующих в обработке информации;
связь каждого нейрона с большим количеством других нейронов;
изменяющиеся по весу связи между нейронами;
массивная параллельность обработки информации.
Нейросетевые технологии хорошо зарекомендовали себя в решении всевозможных задач прогнозирования. Они способны решать задачи опираясь на неполную, искаженную, зашумленную и внутренне противоречивую информацию.
Конкретизация понятия «искусственный интеллект»
Как отмечалось, в исследованиях по искусственному интеллекту ученые отвлекаются от сходства процессов, происходящих в технической системе или в реализуемых ею программах, с мышлением человека. Если система решает задачи, которые человек обычно решает посредством своего интеллекта, то мы имеем дело с системой искусственного интеллекта.
Однако это ограничение недостаточно. Создание традиционных программ для ЭВМ — работа программиста -не есть конструирование искусственного интеллекта. Какие же задачи, решаемые техническими системами, можно рассматривать как конституирующие искусственный интеллект?
Чтобы ответить на этот вопрос, надо уяснить, прежде всего, что такое задача. Как отмечают психологи, этот термин тоже не является достаточно определенным. По-видимому, в качестве исходного можно принять понимание задачи как мыслительной задачи, существующее в психологии. Они подчеркивают, что задача есть только тогда, когда есть работа для мышления, т. е. когда имеется некоторая цель, а средства к ее достижению не ясны; их надо найти посредством мышления. Хорошо по этому поводу сказал Д. Пойа: «…трудность решения в какой-то мере входит в самопонятие задачи: там, где нет трудности, нет и задачи».Если человек имеет очевидное средство, с помощью которого наверное можно осуществить желание, поясняет он, то задачи не возникает. Если человек обладает алгоритмом решения некоторой задачи и имеет физическую возможность его реализации, то задачи в собственном смысле уже не существует.
Раздел 1. Система « человек — среда обитания»
... приборы контроля. Тема 2. Негативные факторы в системе "человек -среда обитания" и их воздействие на человека и окружающую среду. Неконтролируемый выход энергии ... и теплоносителей Классификация способов вентиляции: естественная, искусственная. Понятие кратности воздухообмена. Аварийная вентиляция. Освещение, классификация: естественное, искусственное. Общее, местное освещение. Аварийное освещение. ...
Так понимаемая задача в сущности тождественна проблемной ситуации, и решается она посредством преобразования последней. В ее решении участвуют не только условия, которые непосредственно заданы. Человек использует любую находящуюся в его памяти информацию, «модель мира», имеющуюся в его психике и включающую фиксацию разнообразных законов, связей, отношений этого мира.
Если задача не является мыслительной, то она решается на ЭВМ традиционными методами и, значит, не входит в круг задач искусственного интеллекта. Ее интеллектуальная часть выполнена человеком. На долю машины осталась часть работы, которая не требует участия мышления, т. е. «безмысленная», неинтеллектуальная.
Под словом «машина» здесь понимается машина вместе с ее совокупным математическим обеспечением, включающим не только программы, но и необходимые для решения задач «модели мира». Недостатком такого понимания является главным образом его антропоморфизм. Задачи, решаемые искусственным интеллектом, целесообразно определить таким образом, чтобы человек по крайней мере в определении отсутствовал. При характеристике мышления отмечали, что его основная функция заключается в выработке схем целесообразных внешних действий в бесконечно варьирующих условиях. Специфика человеческого мышления (в отличие от рассудочной деятельности животных) состоит в том, что человек вырабатывает и накапливает знания, храня их в своей памяти. Выработка схем внешних действий происходит не по принципу «стимул — реакция», а на основе знаний, получаемых дополнительно из среды, для поведения в которой вырабатывается схема действия.
Этот способ выработки схем внешних действий (а не просто действия по командам, пусть даже меняющимся как функции от времени или как однозначно определенные функции от результатов предшествующих шагов), является существенной характеристикой любого интеллекта. Отсюда следует, что к системам искусственного интеллекта относятся те, которые, используя заложенные в них правила переработки информации, вырабатывают новые схемы целесообразных действий на основе анализа моделей среды, хранящихся в их памяти. Способность к перестройке самих этих моделей в соответствии с вновь поступающей информацией является свидетельством более высокого уровня искусственного интеллекта.
Большинство исследователей считают наличие собственной внутренней модели мира у технических систем предпосылкой их «интеллектуальности». Формирование такой модели, как показано ниже, связано с преодолением синтаксической односторонности системы, т.е. с тем, что символы или та их часть, которой оперирует система, интерпретированы, имеют семантику.
Характеризуя особенности систем искусственного интеллекта, Л. Т. Кузин указывает на: 1)наличие в них собственной внутренней модели внешнего мира; эта модель обеспечивает индивидуальность, относительную самостоятельность системы в оценке ситуации, возможность семантической и прагматической интерпретации запросов к системе; 2)способность пополнения имеющихся знаний; 3)способность к дедуктивному выводу, т.е. к генерации информации, которая в явном виде не содержится в системе; это качество позволяет системе конструировать информационную структуру с новой семантикой и практической направленностью;4)умение оперировать в ситуациях, связанных с различными аспектами нечеткости, включая «понимание» естественного языка; 5)способность к диалоговому взаимодействию с человеком; 6)способность к адаптации.
Выявление профессионально важных качеств специалистов системы человек-техника
... – углублённое изучение пригодности к деятельности в системе “Человек-техника” - требует специального диагностического инструментария. Для эффективной деятельности в системе “человек – техника” важен моторный компонент деятельности, т.е. характеристики ... дома, не заметить идущего Вам навстречу знакомого и т.п.? 54. Вы человек усидчивый? 55. Нравится ли Вам разбираться в устройстве бытовых электро- и ...
На вопрос, все ли перечисленные условия обязательны, необходимы для признания системы интеллектуальной, ученые отвечают по-разному. В реальных исследованиях, как правило, признается абсолютно необходимым наличие внутренней модели внешнего мира, и при этом считается достаточным выполнение хотя бы одного из перечисленных выше условий.
П. Армер выдвинул мысль о «континууме интеллекта»: различные системы могут сопоставляться не только как имеющие и не имеющие интеллекта, но и по степени его развития. При этом, считает он, желательно разработать шкалу уровня интеллекта, учитывающую степень развития каждого из его необходимых признаков. В свое время А.Тьюринг предложил в качестве критерия, определяющего, может ли машина мыслить, «игру в имитацию». Согласно этому критерию, машина может быть признана мыслящей, если человек, ведя с ней диалог по достаточно широкому кругу вопросов, не сможет отличить ее ответов от ответов человека.
Критерий Тьюринга в литературе был подвергнут критике с различных точек зрения. На наш взгляд, действительно серьезный аргумент против этого критерия заключается в том, что в подходе Тьюринга ставится знак тождества между способностью мыслить и способностью к решению задач переработки информации определенною типа. Успешная «игра в имитацию» не может без предварительного тщательного анализа мышления как целостности бытъ признана критерием ее способности к мышлению.
Однако этот аргумент бьет мимо цели, если мы говорим не о мыслящей машине, а об искусственном интеллекте, который должен лишь продуцировать физические тела знаков, интерпретируемые человеком в качестве решений определенных задач. Поэтому прав В. М. Глушков,утверждая, что наиболее естественно, следуя Тьюрингу, считать, что некоторое устройство, созданное человеком, представляет собой искусственный интеллект, если, ведя с ним достаточно долгий диалог по более или менее широкому кругу вопросов, человек не сможет различить, разговаривает он с разумным живым существом или с автоматическим устройством. Если учесть возможность разработки программ, специально рассчитанных на введение в заблуждение человека,то, возможно, следует говорить не просто о человеке, а о специально подготовленном эксперте. Этот критерий, на наш взгляд, не противоречит перечисленным выше особенностям системы искусственного интеллекта.
Но что значит по «достаточно широкому кругу вопросов», о котором идет речь в критерии Тьюринга и в высказывании В. М. Глушкова? На начальных этапах разработки проблемы искусственного интеллекта ряд исследователей, особенно занимающихся эвристическим программированием, ставили задачу создания интеллекта, успешно функционирующего в любой сфере деятельности. Это можно назвать разработкой «общего интеллекта».Сейчас большинство работ направлено на создание «профессионального искусственного интеллекта», т. е. систем, решающих интеллектуальные задачи из относительно ограниченной области (например, управление портом, интегрирование функций, доказательство теорем геометрии и т.п.).
Нервная система человека
... и нервные узлы. Часть нервной системы, которая регулирует роботу скелетных мышц, называют соматической. Посредством соматической нервной систем человек может управлять движениями, произвольно ... вызывать или прекращать их. Часть нервной системы, регулирующую деятельность внутренних органов ...
В этих случаях «достаточно широкий круг вопросов» должен пониматься как соответствующая область предметов.
Исходным пунктом наших рассуждений об искусственном интеллекте было определение такой системы как решающей мыслительные задачи. Но перед нею ставятся и задачи, которые люди обычно не считают интеллектуальными, поскольку при их решении человек сознательно не прибегает к перестройке проблемных ситуаций. К их числу относится, например, задача распознания зрительных образов. Человек узнает человека, которого видел один-два раза, непосредственно в процессе чувственного восприятия. Исходя из этого кажется, что эта задача не является интеллектуальной. Но в процессе узнавания человек не решает мыслительных задач лишь постольку, поскольку программа распознания не находится в сфере осознанного. Но так как в решении таких задач на неосознанном уровне участвует модель среды, хранящаяся в памяти, то эти задачи в сущности являются интеллектуальными. Соответственно и система, которая ее решает, может считаться интеллектуальной. Тем более это относится к «пониманию» машиной фраз на естественном языке, хотя человек в этом не усматривает обычно проблемной ситуации.
Теория искусственного интеллекта при решении многих задач сталкивается с гносеологическими проблемами.
Одна из таких проблем состоит в выяснении вопроса, доказуема ли теоретически (математически) возможность или невозможность искусственного интеллекта. На этот счет существуют две точки зрения. Одни считают математически доказанным, что ЭВМ в принципе может выполнить любую функцию, осуществляемую естественным интеллектом. Другие полагают в такой же мере доказанным математически, что есть проблемы, решаемые человеческим интеллектом, которые принципиально недоступны ЭВМ. Эти взгляды высказываются как кибернетиками, так и философами.
Проблема искусственного интеллекта
Гносеологический анализ проблемы искусственного интеллекта вскрывает роль таких познавательных орудий, как категории, специфическая семиотическая система, логические структуры, ранее накопленное знание. Они обнаруживаются не посредством исследования физиологических или психологических механизмов познавательного процесса, а выявляются в знании, в его языковом выражении. Орудия познания, формирующиеся в конечном счете на основе практической деятельности, необходимы для любой системы, выполняющей функции абстрактного мышления, независимо от ее конкретного материального субстрата и структуры. Поэтому, чтобы создать систему, выполняющую функции абстрактного мышления, т. е. в конечном счете формирующую адекватные схемы внешних действий в существенно меняющихся средах, необходимо наделить такую систему этими орудиями.
Сенсорные системы человека
... — человеческих органов чувств или сенсорных систем человека. Программные продукты "Эффектона" позволяют измерять различные показатели сенсорной системы человека (например пакет "Ягуар" содержит тесты скоростей простой ... функций мозга. Программные продукты "Эффектона" позволяют измерять различные показатели сенсомоторной системы человека (в частности, пакет "Ягуар" содержит тесты времени простой аудио ...
Развитие систем искусственного интеллекта за последние десятилетия идет по этому пути. Однако степень продвижения в данном направлении в отношении каждого из указанных познавательных орудий неодинакова и в целом пока незначительна.
1.В наибольшей мере системы искусственного интеллекта используютформально-логические структуры, что обусловлено их неспецифичностью для мышления и в сущности алгоритмическим характером. Это дает возможность относительно легкой их технической реализации. Однако даже здесь кибернетике предстоит пройти большой путь. В системах искусственного интеллекта еще слабо используются модальная, императивная, вопросная и иные логики, которые функционируют в человеческом интеллекте и не менее необходимы для успешных познавательных процессов, чем давно освоенные логикой, а затем и кибернетикой формы вывода. Повышение «интеллектуального» уровня технических систем, безусловно, связано не только с расширением применяемых логических средств, но и с более интенсивным их использованием (для проверки информации на непротиворечивость, конструирования планов вычислений и т. д.).
2.Намного сложнее обстоит дело ссемиотическими системами,без которых интеллект невозможен. Языки, используемые в ЭВМ, еще далеки от семиотических структур, которыми оперирует мышление.
Прежде всего для решения ряда задач необходимо последовательное приближение семиотических систем, которыми наделяется ЭВМ, к естественному языку, точнее, к использованию его ограниченных фрагментов. В этом плане предпринимаются попытки наделить входные языки ЭВМ универсалиями языка, например полисемией (которая элиминируется при обработке в лингвистическом процессоре).
Разработаны проблемно-ориентированные фрагменты естественных языков, достаточные для решения системой ряда практических задач. Наиболее важным итогом этой работы является создание семантических языков (и их формализация), в которых слова-символы имеют интерпретацию.
Однако многие универсалии естественных языков, необходимые для выполнения ими познавательных функций, в языках искусственного интеллекта пока реализованы слабо (например, открытость) или используются ограниченно (например, полисемия).
Все большее воплощение в семиотических системах универсалий естественного языка, обусловленных его познавательной функцией, выступает одной из важнейших линий совершенствования систем искусственного интеллекта, особенно тех, в которых проблемная область заранее жестко не определена.
Современные системы искусственного интеллекта способны осуществлять перевод с одномерных языков на многомерные. В частности, они могут строить диаграммы, схемы, чертежи, графы, высвечивать на экранах кривые и т. д. ЭВМ производят и обратный перевод (описывают графики и тому подобное с помощью символов).
Такого рода перевод является существенным элементом интеллектуальной деятельности. Но современные системы искусственного интеллекта пока не способны к непосредственному (без перевода на символический язык) использованию изображений или воспринимаемых сцен для «интеллектуальных» действий. Поиск путей глобального (а не локального) оперирования информацией составляет одну из важнейших перспективных задач теории искусственного интеллекта.
3.Воплощение в информационные массивы и программы систем искусственного интеллекта аналогов категорий находится пока в начальной стадии. Аналоги некоторых категорий (например, «целое», «часть», «общее», «единичное») используются в ряде систем представления знаний, в частности в качестве «базовых отношений», в той мере, в какой это необходимо для тех или иных конкретных предметных или проблемных областей, с которыми взаимодействуют системы.
В формализованном понятийном аппарате некоторых систем представления знаний предприняты отдельные (теоретически существенные и практически важные) попытки выражения некоторых моментов содержания и других категорий (например, «причина», «следствие»).
Однако ряд категорий (например, «сущность», «явление») в языках систем представления знаний отсутствует. Проблема в целом разработчиками систем искусственного интеллекта в полной мере еще не осмыслена, и предстоит большая работа философов, логиков и кибернетиков по внедрению аналогов категорий в системы представления знаний и другие компоненты интеллектуальных систем. Это одно из перспективных направлений в развитии теории и практики кибернетики.
4.Современные системы искусственного интеллекта почти не имитируют сложную иерархическую структуру образа, что не позволяет им перестраивать проблемные ситуации, комбинировать локальные части сетей знаний в блоки, перестраивать эти блоки и т. д.
Не является совершенным и взаимодействие вновь поступающей информации с совокупным знанием, фиксированным в системах. В семантических сетях и фреймах пока недостаточно используются методы, благодаря которым интеллект человека легко пополняется новой информацией, находит нужные данные, перестраивает свою систему знаний и т. д.
5.Еще в меньшей мере современные системы искусственного интеллекта способны активно воздействовать на внешнюю среду, без чего не может; осуществляться самообучение и вообще совершенствование «интеллектуальной» деятельности.
Таким образом, хотя определенные шаги к воплощению гносеологических характеристик мышления в современных системах искусственного интеллекта сделаны, но в целом эти системы еще далеко не владеют комплексом гносеологических орудий, которыми располагает человек и которые необходимы для выполнения совокупности функций абстрактного мышления. Чем больше характеристики систем искусственного интеллекта будут приближены к гносеологическим характеристикам мышления человека, тем ближе будет их «интеллект» к интеллекту человека, точнее, тем выше будет их способность к комбинированию знаковых конструкций, воспринимаемых и интерпретируемых человеком в качестве решения задач и вообще воплощения мыслей.
В связи с этим возникает сложный вопрос. При анализе познавательного процесса гносеология абстрагируется от психофизиологических механизмов, посредством которых реализуется этот процесс. Но из этого не следует, что для построения систем искусственного интеллекта эти механизмы не имеют значения. Вообще говоря, не исключено, что механизмы, необходимые для воплощения неотъемлемых характеристик интеллектуальной системы, не могут быть реализованы в цифровых машинах или даже в любой технической системе, включающей в себя только компоненты неорганической природы. Иначе говоря, в принципе не исключено, что хотя мы можем познать все гносеологические закономерности, обеспечивающие выполнение человеком его познавательной функции, но их совокупность реализуема лишь в системе, субстратно тождественной человеку.
Такой взгляд обосновывается X.Дрейфусом. «Телесная организация человека,-пишет он,-позволяет ему выполнять… функции, для которых нет машинных программ-таковые не только еще не созданы, но даже не существуют в проекте… Эти функции включаются в общую способность человека к приобретению телесных умений и навыков. Благодаря этой фундаментальной способности наделенный телом субъект может существовать в окружающем его мире, не пытаясь решить невыполнимую задачу формализации всего и вся».
Как отмечает Б. В. Бирюков,подчеркивание значения «телесной организации» для понимания особенностей психических процессов, в частности возможности восприятия, заслуживает внимания. Качественные различия в способности конкретных систем отражать мир тесно связаны с их структурой, которая хотя и обладает относительной самостоятельностью, но не может преодолеть некоторых рамок, заданных субстратом. В процессе биологической эволюции совершенствование свойства отражения происходило на основе усложнения нервной системы, т. е. субстрата отражения. Не исключается также, что различие субстратов ЭВМ и человека может обусловить фундаментальные различия в их способности к отражению, что ряд функций человеческого интеллекта в принципе недоступен таким машинам.
Иногда в философской литературе утверждается, что допущение возможности выполнения технической системой интеллектуальных функций человека означает сведение высшего (биологического и социального) к низшему (к системам из неорганических компонентов) и, следовательно, противоречит материалистической диалектике. Однако в этом рассуждении не учитывается, что пути усложнения материи однозначно не предначертаны и не исключено, что общество имеет возможность создать из неорганических компонентов (абстрактно говоря, минуя химическую форму движения) системы не менее сложные и не менее способные к отражению, чем биологические. Созданные таким образом системы являлись бы компонентами общества, социальной формой движения. Следовательно, вопрос о возможности передачи интеллектуальных функций техническим системам, и в частности о возможности наделения их рассмотренными в работе гносеологическими орудиями, не может быть решен только исходя из философских соображений. Он должен быть подвергнут анализу на базе конкретных научных исследований.
X.Дрейфус подчеркивает, что ЭВМ оперирует информацией, которая не имеет значения, смысла. Поэтому для ЭВМ необходим перебор огромного числа вариантов. Телесная организация человека, его организма позволяет отличать значимое от незначимого для жизнедеятельности и вести поиск только в сфере первого. Для «нетелесной» ЭВМ, утверждает Дрейфус, это недоступно. Конечно, конкретный тип организации тела позволяет человеку ограничивать пространство возможного поиска. Это происходит уже на уровне анализаторной системы. Совсем иначе обстоит дело в ЭВМ. Когда в кибернетике ставится общая задача, например распознания образов, то эта задача переводится с чувственно-наглядного уровня на абстрактный. Тем самым снимаются ограничения, не осознаваемые человеком, но содержащиеся в его «теле», в структуре органов чувств и организма в целом. Они игнорируются ЭВМ. Поэтому пространство поиска резко увеличивается. Это значит, что к «интеллекту» ЭВМ предъявляются более высокие требования (поиска в более обширном пространстве), чем к интеллекту человека, к которому приток информации ограничен физиологической структурой его тела.
Системы, обладающие психикой, отличаются от ЭВМ прежде всего тем, что им присущи биологические потребности, обусловленные их материальным, биохимическим субстратом. Отражение внешнего мира происходит сквозь призму этих потребностей, в чем выражается активность психической системы. ЭВМ не имеет потребностей, органически связанных с ее субстратом, для нее как таковой информация незначима, безразлична. Значимость, генетически заданная человеку, имеет два типа последствий. Первый-круг поиска сокращается, и тем самым облегчается решение задачи. Второй-нестираемые из памяти фундаментальные потребности организма обусловливают односторонность психической системы. Дрейфус пишет в связи с этим: «Если бы у нас на Земле очутился марсианин, ему, наверное, пришлось бы действовать в абсолютно незнакомой обстановке; задача сортировки релевантного и нерелевантного, существенного и несущественного, которая бы перед ним возникла, оказалась бы для него столь же неразрешимой, как и для цифровой машины, если, конечно, он не сумеет принять в расчетникаких человеческих устремлений».С этим нельзя согласиться. Если «марсианин» имеет иную биологию, чем человек, то он имеет и иной фундаментальный слой неотъемлемых потребностей, и принять ему «человеческие устремления» значительно труднее, чем ЭВМ, которая может быть запрограммирована на любую цель.
Животное в принципе не может быть по отношению к этому фундаментальному слою перепрограммировано, хотя для некоторых целей оно может быть запрограммировано вновь посредством дрессировки. В этом (но только в этом) смысле потенциальные интеллектуальные возможности машины шире таких возможностей животных. У человека над фундаментальным слоем биологических потребностей надстраиваются социальные потребности, и информация для него не только биологически, но и социально значима. Человек универсален и с точки зрения потребностей и с точки зрения возможностей их удовлетворения. Однако эта универсальность присуща ему как социальному существу, производящему средства целесообразной деятельности, в том числе и системы искусственного интеллекта.
Таким образом, телесная организация не только дает дополнительные возможности, но и создает дополнительные трудности. Поэтому интеллекту человека важно иметь на вооружении системы, свободные от его собственных телесных и иных потребностей, пристрастий. Конечно, от таких систем неразумно требовать, чтобы они самостоятельно распознавали образы, классифицировали их по признакам, по которым это делает человек. Им цели необходимо задавать в явной форме.
Вместе с тем следует отметить, что технические системы могут иметь аналог телесной организации. Развитая кибернетическая система обладает рецепторны-ми и эффекторными придатками. Начало развитию таких систем положили интегральные промышленные роботы, в которых ЭВМ в основном выполняет функцию памяти. В роботах третьего поколения ЭВМ выполняет и «интеллектуальные» функции. Их взаимодействие с миром призвано совершенствовать их «интеллект». Такого рода роботы имеют «телесную организацию», конструкция их рецепторов и эффекторов содержит определенные ограничения, сокращающие пространство, в котором, абстрактно говоря, могла бы совершать поиск цифровая машина.
Тем не менее совершенствование систем искусственного интеллекта на базе цифровых машин может иметь границы, из-за которых переход к решению интеллектуальных задач более высокого порядка, требующих учета глобального характера переработки информации и ряда других гносеологических характеристик мышления, невозможен на дискретных машинах при сколь угодно совершенной программе. Это значит, что техническая (а не только биологическая) эволюция отражающих систем оказывается связанной с изменением материального субстрата и конструкции этих систем. Такая эволюция, т. е. аппаратурное усовершенствование систем искусственного интеллекта, например, через более интенсивное использование аналоговых компонентов, гибридных систем, голографии и ряда других идей, будет иметь место. При этом не исключается использование физических процессов, протекающих в мозгу, и таких, которые психика в качестве своих механизмов не использует. Наряду с этим еще далеко не исчерпаны возможности совершенствования систем искусственного интеллекта путем использования в функционировании цифровых машин гносеологических характеристик мышления, о которых речь шла выше.
Заключение
Развитие информационной техники позволило компенсировать человеку психофизиологическую ограниченность своего организма в ряде направлений. «Внешняя нервная система», создаваемая и расширяемая человеком, уже дала ему возможность вырабатывать теории, открывать количественные закономерности, раздвигать пределы познания сложных систем. Искусственный интеллект и его совершенствование превращают границы сложности, доступные человеку, в систематически раздвигаемые. Это особенно важно в современную эпоху, когда общество не может успешно развиваться без рационального управления сложными и сверхсложными системами. Разработка проблем искусственного интеллекта является существенным вкладом в осознание человеком закономерностей внешнего и внутреннего мира, в их использование в интересах общества.