Адениновые нуклеотиды и креатинфосфат

НЕРВНАЯ ТКАНЬ

Нервная ткань имеет общие черты, которые присущи клеткам любой ткани, а также специфические особенности, определяемые характером функций, выполняемых нервной системой в целостном организме. Эти особенности проявляются как в химическом составе, так и в характере метаболизма нервной ткани.

Нервная ткань состоит из трех клеточных элементов: нейронов (нервные клетки); нейроглии-системы клеток, непосредственно окружающих нервные клетки в головном и спинном мозге; мезенхимных элементов, включающих микроглию-глиальные макрофаги (клетки Ортеги).

Основная масса головного мозга представлена первыми двумя типами клеточных элементов. Нейроны сосредоточены в сером веществе (60−65% от вещества головного мозга), тогда как белое вещество ЦНС и периферические нервы состоят главным образом из элементов нейроглии и их производного миелина.

СТРУКТУРА НЕЙРОНА

Нейрон имеет тело, многочисленные ветвящиеся короткие отростки-дендриты и один длинный отросток-аксон, длина которого может достигать нескольких десятков сантиметров.

Объем цитоплазмы, содержащейся в отростках нервной клетки, может в несколько раз превышать ее количество в теле клетки. Тело нейрона окружено плазматической мембраной — плазмалеммой (рис. 19.2).

В тесной связи с плазмолеммой * в теле нейрона и проксимальных отрезках дендритов находится так называемая подповерхностная мембранная структура. Это цистерны, которые расположены параллельно поверхности плазмолеммы и отделены от нее очень узкой светлой зоной. Предполагают, что цистерны играют важную роль в метаболизме нейрона. Основной ультраструктурой цитоплазмы нейрона является эндоплазматическая сетьсистема ограниченных мембраной пузырьков, трубочек и уплощенных мешочков, или цистерн. Мембраны эндоплазматической сети связаны определенным образом с плазмолеммой и оболочкой ядра нейрона.

Гранулы, локализованные на мембранах эндоплазматической сети, а также свободно расположенные в цитоплазме, являются рибосомами.

Характерной структурной основой нервной клетки является базофильное вещество (субстанция Ниссля), состоящее из рибонуклеиновых кислот и белков. В цитоплазме также выявляется сеть тонких нитейнейрофибрилл, которые в совокупности образуют густую сеть. Нейрофибриллы-этоструктурное выражение правильной линейной ориентации белковых молекул.

5 стр., 2498 слов

Общая схема строения нервной системы. Нервная ткань.

... покоя Нервная система состоит из нейронов – нервных клеток. Помимо нейронов в состав нервной системы входят клетки глии. Совокупность нейронов и глиальных клеток составляет нервную ткань. Клетки глии ... созревание коры больших полушарий: усложняется организация ее нервных элементов, расширяются метаболические возможности нейронов. - совершенствуются механизмы функциональной организации мозга. - ...

Важный компонент цитоплазмы нейрона-пластинчатый комплекс (аппарат Гольджи), где сосредоточены главным образом липидные компоненты клетки. Одной из особенностей митохондрий, изолированных из нервных клеток, является то, что они содержат меньше ферментов, участвующих в процессах окисления жирных кислот и аминокислот, чем митохондрии из других тканей.

В ЦНС лизосомы обнаруживаются постоянно и выполняют те же функции, что и лизосомы других органов тканей.

Размер ядра нейрона колеблется от 3 до 18 мкм, достигая в крупных нейронах 1/4 величины их тела.

Строение миелина

Нервные волокна, образующиеся из аксонов нервных клеток, по своему строению могут быть разделены на 2 типа: миелиновые (мякотные) и без-миелиновые (бедные миелином).

Проводниковая система соматической нервной системы, а также ЦНС относятся к первому типу, функционально более совершенному, обладающему способностью с высокой скоростью передавать нервные импульсы.

Миелиновое вещество-понятие морфологическое. По сути миелин-это система, образованная многократно наслаивающимися мембранами клеток нейроглии* вокруг нервных отростков (в периферических нервных стволах нейроглия представлена леммоцитами, или шванновскими клетками, а в белом веществе ЦНС-астроцитами).

По химическому составу миелиновое вещество является сложным белково-липидным комплексом.

На долю липидов приходится до 80% плотного осадка; 90% всех липидов миелина представлено холестерином, фосфолипидами и церебро-зидами. Считают, что в липоидных слоях миелиновых оболочек молекулы различных липидов имеют строго определенное расположение ХИМИЧЕСКИЙ СОСТАВ МОЗГА

Серое вещество головного мозга представлено в основном телами нейронов, а белое вещество аксонами. В связи с этим указанные отделы мозга значительно различаются по своему химическому составу. Эти различия носят прежде всего количественный характер. Содержание воды в сером веществе головного мозга заметно больше, чем в белом. В сером веществе белки составляют половину плотных веществ, а в белом веществе- одну треть *. На долю липидов в белом веществе приходится более половины сухого остатка, в сером веществе-лишь около 30%.

13 стр., 6091 слов

Контрольная работа по анатомии- Нейрон — структурно — функциональная единица нервной системы

... nbsp;мозг и 2 полушария с развитой нервной  тканью, образующей т. н. первичную кору мозга.  Передний мозг, ... работы нейронов. Медиатор - низкомолекулярное вещество, освобождаемое пресинаптическим нервным окончанием и обеспечивающее перенос сигнала в ... В частности, можно предполагать, что белки, подобные Г-белкам, располагаются непосредственно на поверхности мембраны синаптических ...

На долю белков приходится примерно 40% от сухой массы головного мозга. Мозговая ткань является трудным объектом для изучения белкового состава вследствие большого содержания липидов и наличия белково-ли-пидных комплексов.

А. Я. Данилевский впервые разделил белки мозговой ткани на растворимые в воде и солевых растворах белки и нерастворимые белки. Обширные исследования в этой области были проведены также А. В. Палладиным

и сотр., которые разделили белки нервной ткани на 4 фракции: извлекаемые водой, 4,5% раствором КС1, 0,1% раствором NaOH и нерастворимый остаток. Установлено, что серое вещество богаче белками, растворимыми в воде, чем белое вещество,-соответственно 30 и 19%. Белое вещество, напротив, содержит гораздо больше (22%) нерастворимого белкового остатка, чем серое вещество (5%).

В дальнейшем было выделено 5−10 фракций растворимых белков мозга, различающихся по своей электрофоретической подвижности.

В настоящее время, сочетая методы экстракции буферными растворами, хроматографии на колонках с ДЭАЭ-целлюлозой и диск-электрофореза в полиакриламидном геле, удалось выделить из ткани мозга около 100 различных растворимых белковых фракций.

В нервной ткани содержатся как простые, так и сложные белки. Простые белки-это альбумины (нейроальбумины), глобулины (нейроглобулины), катионные белки (гистоны и др.) и опорные белки (нейросклеропротеины).

Альбумины и глобулины по своим физико-химическим свойствам несколько отличаются от аналогичных белков сыворотки крови, поэтому их называют нейроальбуминами и нейроглобулинами. Количество нейроглобулинов в головном мозге относительно велико-в среднем 5% по отношению ко всем растворимым белкам. Нейроальбумины являются основным белковым компонентом фосфопротеинов нервной ткани, на их долю приходится основная масса растворимых белков (89−90%).

13 стр., 6156 слов

Центральная нервная система 2

... белка и нуклеиновых кислот, и клетки теряли способность проводить нервные импульсы. После кислородного голодания в головной мозг крыс пересаживали кусочек эмбриональной нервной ткани ... и метаболических белков цитоплазмы нейрона ... тканями организма. Эту функцию несёт периферийная нервная система, включающая у позвоночных черепно-мозговые и спинно-мозговые нервы. Афферентные (чувствительные) нервные ...

В свободном состоянии нейроальбумины встречаются редко. В частности, они легко соединяются с липидами, нуклеиновыми кислотами, углеводами и другими небелковыми компонентами.

Белки, которые в процессе электрофоретического разделения при рН 10,5−12,0 движутся к катоду, получили название катионных. Главнейшими представителями этой группы белков в нервной ткани являются гистоны, которые делятся на пять основных фракций в зависимости от содержания в их полипептидных цепях остатков лизина, аргинина и глицина.

Нейросклеропротеины можно охарактеризовать как структурно-опорные белки. Основные представители этих белков — нейроколлагены, нейроэлас-тины, нейростромины и др. Они составляют примерно 8−10% от общего количества простых белков нервной ткани и локализованы в основном в белом веществе головного мозга и в периферической нервной системе.

Сложные белки нервной ткани представлены нуклеопротеинами, липопротеинами, протеолипидами, фосфопротеинами, гликопротеинами и т. д. В мозговой ткани содержатся в значительном количестве еще более сложные надмолекулярные образования, такие, как липонуклеопротеины, липогликопротеины и, возможно, липогликонуклеопротеиновые комплексы.

Нуклеопротеины- белки, которые принадлежат либо к дезоксирибонуклеопротеинам, либо к рибонуклеопротеинам. Часть этих белков из мозговой ткани извлекается водой, другая часть-солевыми средами, а третья0,1 М раствором щелочи.

Липопротеины составляют значительную часть водорастворимых белков мозговой ткани. Их липидный компонент- это в основном фосфоглицериды и холестерин.

11 стр., 5207 слов

Психические расстройства и мозг

... , тела которых расположены в среднем мозге, и локализованными в мозговой коре нервными клетками, содержащими глутамат. Нарушение этого ... числа звеньев, связывающих имипрамин, наблюдающееся в посмертной ткани мозга у больных, совершивших суицид, указывает на участие ... активность системы вторичного мессенджера; аномалии различных G-белков, сопряженных с рецепторами и стимулирующих или подавляющих ...

Протеолипиды-это белково-липидные соединения, экстрагируемые органическими растворителями из ткани мозга. Отличаются от водорастворимых липопротеинов тем, что они нерастворимы в воде, но растворимы в смеси хлороформ-метано л. Белки, освобожденные от липидов, раство-римы в воде, а также (благодаря высокому содержанию гидрофобных аминокислот) в смеси хлороформ-метанол. Наибольшее количество протеолипидов сосредоточено в миелине, в небольших количествах они входят в состав синаптических мембран и синаптических пузырьков.

Фосфопротеины в головном мозге содержатся в большем количестве, чем в других органах и тканях, — около 2% от общего количества всех сложных белков мозга. Фосфопротеины обнаружены в мембранах различных морфологических структур нервной ткани.

Гликопротеины представляют собой чрезвычайно гетерогенную группу белков. По количеству белка и углеводов, входящих в состав гликопро-теинов, их можно разделить на две основные группы. Первая группа-это гликопротеины, содержащие от 5 до 40% углеводов и их производных; белковая часть состоит преимущественно из альбуминов и глобулинов. В гликопротеинах, составляющих вторую группу, содержится 40−85% углеводов, часто обнаруживается липидный компонент; по своему составу они могут быть отнесены к гликолипопротеинам.

В нервной ткани обнаружен ряд специфических белков, в частности белок S-100 и белок 14−3-2. Белок S-100, или белок Мура, называют также кислым белком, так как он содержит большое количество остатков глутаминовой и аспарагиновой кислот. Этот белок сосредоточен в основном в нейроглии (85−90%), в нейронах его не более 10−15% от общего количества белка в головном мозге. Установлено, что концентрация белка S-100 возрастает при обучении (тренировках) животных. Пока нет оснований считать, что белок S-100 непосредственно участвует в формировании и хранении памяти. Не исключено, что его участие в этих процессах опосредованно. Белок 14−3-2 также относится к кислым белкам. В отличие от белка S-100 он локализован в основном в нейронах; в нейроглиальных клетках его содержание невелико. Пока неясна роль белка 14−3-2 в выполнении специфических функций нервной ткани.

12 стр., 5970 слов

Краткое содержание Дон Жуан, или каменный гость Мольер

... перипетии, перемежающиеся с рассуждениями о любви, заполняли все содержание романа. В отличие от пасторалей галантно-героические романы изобилуют ... названиями, лишь условно отвечавшими подлинному идейному и художественному содержанию того или иного произведения (Комедия плаща и шпаги, ... и Астреи — перебиваются множеством вставных эпизодов, вводящих в ткань романа все новых и новых действующих лиц и в ...

Ферменты. В мозговой ткани содержится большое количество ферментов, катализирующих обмен углеводов, липидов и белков. До сих пор в кристаллическом виде из ЦНС млекопитающих выделены лишь некоторые ферменты, в частности ацетилхолинэстераза и креатинкиназа.

Значительное количество ферментов в мозговой ткани находится в нескольких молекулярных формах (изоферменты): ЛДГ, альдолаза, креатинкиназа, гексокиназа, малатдегидрогеназа, глутаматдегидрогеназа, холинэстераза, кислая фосфатаза, моноаминоксидаза и др.

Липиды

Среди химических компонентов головного мозга особое место занимают липиды, высокое содержание и специфическая природа которых придают мозговой ткани характерные особенности. В группу липидов головного мозга входят фосфоглицериды, холестерин, сфингомиелины, цереброзиды, ганглиозиды и очень небольшое количество нейтрального жира (табл. 19.2).

Многие липиды нервной ткани находятся в тесной взаимосвязи с белками, образуя сложные системы типа протеолипидов.

В сером веществе головного мозга фосфоглицериды составляют более 60% от всех липидов, а в белом веществе-около 40%. Напротив, в белом веществе содержание холестерина, сфингомиелинов и особенно цереброзидов больше, чем в сером веществе.

Углеводы

В мозговой ткани имеются гликоген и глюкоза, но по сравнению с другими тканями ткань мозга бедна углеводами. Общее содержание глюкозы в головном мозге разных животных составляет в среднем 1−4 мкмоль на 1 г ткани, а гликогена-2,5- 4,5 мкмоль на 1 г ткани. Интересно отметить, что общее содержание гликогена в мозге эмбрионов и новорожденных животных значительно выше, чем в мозге взрослых. Например, у новорожденных мышей в отличие от взрослых особей уровень гликогена в 3 раза выше. По мере роста и дифференцировки мозга концентрация гликогена быстро снижается и остается относительно постоянной у взрослого животного.

13 стр., 6230 слов

Нейромедиаторые системы мозга

... , например, при хроническом алкоголизме, в тканях головного мозга увеличивается содержание дофамина, появляются его метаболиты, ... также энергетические процессы мозга, повышается дыхательная активность тканей, улучшается утилизация мозгом глюкозы, улучшается кровоснабжение. ... лабильность, неврозы, вегетососудистая дистония, последствия черепно-мозговой травмы, энцефалопатии, в том числе алкогольные, ...

В мозговой ткани имеются также промежуточные продукты обмена углеводов: гексозо- и триозофосфаты, молочная, пировиноградная и другие кислоты

Адениновые нуклеотиды и креатинфосфат

В мозговой ткани на долю адениновых нуклеотидов приходится около 84% от всех свободных нуклеотидов. Большую часть оставшихся нуклеотидов составляют производные гуанина. В целом количество высокоэргических соединений в нервной ткани невелико. Содержание нуклеотидов и креатин-фосфата в головном мозге крыс составляет в среднем (в мкмоль на 1 г сырой массы): АТФ-2,30−2,90; АДФ-0,30−0,50; АМФ-0,03−0,05-ГТФ-0,20−0,30; ГДФ-0,15−0,20; УТФ-0,17−0,25; креатинфосфат-3,50^ 4,75. Распределение основных макроэргических соединений примерно оди­наково во всех отделах мозга.

Содержание циклических нуклеотидов (цАМФ и цГМФ) в головном мозге значительно выше, чем во многих других тканях. Уровень цАМФ в мозге в среднем 1−2, а цГМФ-до 0,2 нмоль на 1 г ткани. Для мозга характерна также высокая активность ферментов метаболизма циклических нуклеотидов. Большинство исследователей считают, что циклические нуклеотиды участвуют в синаптической передаче нервного импульса.

Минеральные вещества

Ионы Na+, K+, Cu2 +, Fe3 +, Ca2 +, Mg2+ и Мп2+ распределены в головном мозге относительно равномерно в сером и белом веществе Содержание фосфатов в белом веществе выше, чем в сером.

Из данных таблицы 19.4 видно, что концентрация ионов К+, Na+, а также С1~ в мозге резко отличается от концентрации их в жидкостях тела.

Количественное соотношение неорганических анионов и катионов в мозговой ткани свидетельствует о дефиците анионов. Расчет показывает, что для покрытия дефицита анионов потребовалось бы в 2 раза больше белков, чем их имеется в мозговой ткани. Принято считать, что остающийся дефицит анионов покрывается за счет липидов. Вполне возможно, что участие липидов в ионном балансе-одна из функций головного мозга.

ОСОБЕННОСТИ МЕТАБОЛИЗМА НЕРВНОЙ ТКАНИ Дыхание

На долю головного мозга приходится 2−3% от массы тела. В то же время потребление кислорода головным мозгом в состоянии физического покоя достигает 20−25% от общего потребления его всем организмом, а у детей

в возрасте до 4 лет мозг потребляет даже 50% кислорода, утилизируемого всем организмом.

О размерах потребления головным мозгом из крови различных веществ, в том числе -кислорода, можно судить по артериовенозной разнице. Установлено, что во время прохождения через мозг кровь теряет около 8 об.% кислорода. В 1 мин на 100 г мозговой ткани приходится 53−54 мл крови Следовательно, 100 г мозга потребляет в 1 мин 3,7 мл кислорода, а весь головной мозг (1500 г)-55,5 мл кислорода*.

Газообмен мозга значительно выше, чем газообмен других тканей, в частности он превышает газообмен мышечной ткани почти в 20 раз' Интенсивность дыхания для различных областей головного мозга неодинакова. Например, интенсивность дыхания белого вещества в 2 раза ниже, чем серого (правда, в белом веществе меньше клеток).

Особенно интенсивно расходуют кислород клетки коры мозга и мозжечка.

Поглощение кислорода головным мозгом значительно меньше при наркозе. Напротив, интенсивность дыхания мозга возрастает при увеличении функциональной активности.

Метаболизм углеводов

Основным субстратом дыхания мозговой ткани является глюкоза. В 1 мин 100 г ткани мозга потребляют в среднем 5 мг глюкозы. Подсчитано, что более 90% утилизируемой глюкозы в ткани мозга окисляется до СО2 и Н2О при участии цикла трикарбоновых кислот. В физиологических условиях роль пентозофосфатного пути окисления глюкозы в мозговой ткани невелика, однако этот путь окисления глюкозы присущ всем клеткам головного мозга. Образующаяся в процессе пентозофосфатного цикла восстановленная форма НАДФ (НАДФН) используется для синтеза жирных кислот и стероидов. Интересно отметить, что в расчете на всю массу головного мозга содержание глюкозы в нем составляет около 750 мг. За 1 мин тканью мозга окисляется 75 мг глюкозы. Следовательно, количество глюкозы, имеющееся в ткани головного мозга, могло бы быть достаточным лишь на 10 мин жизни человека. Данный расчет, а также величина артериовенозной разницы по глюкозе доказывают, что основным субстратом дыхания головного мозга является глюкоза крови. По-видимому, глюкоза легко диффундирует из крови в ткань головного мозга (содержание глюкозы в мозговой ткани 0,05%, а в артериальной крови-4,44 ммоль/л, или 80 мг/100 мл).

Между глюкозой и гликогеном мозговой ткани имеется тесная связь, выражающаяся в том, что при недостаточном поступлении глюкозы из крови гликоген головного мозга является источником глюкозы, а глюкоза при ее избытке-исходным материалом для синтеза гликогена. Распад гликогена в мозговой ткани происходит путем фосфоролиза с участием системы цАМФ. Однако в целом использование гликогена в мозге по сравнению с глюкозой не играет существенной роли в энергетическом отношении, так как содержание гликогена в головном мозге невелико.

Наряду с аэробным метаболизмом углеводов мозговая ткань способна к довольно интенсивному анаэробному гликолизу. Значение этого явления

пока недостаточно ясно, ибо гликолиз как источник энергии ни в коей мере не может сравниться по эффективности с тканевым дыханием в головном

мозге.

Метаболизм лабильных фосфатов (макроэргов)

Интенсивность обновления богатых энергией фосфорных соединений в головном мозге очень велика. Именно этим можно объяснить, что содержание АТФ и креатинфосфата в мозговой ткани характеризуется значительным постоянством. В случае прекращения доступа кислорода мозг может «просуществовать» немногим более минуты за счет резерва лабильных фосфатов. Прекращение доступа кислорода даже на 10−15 с нарушает энергетику нервных клеток, что в целостном организме выражается наступлением обморочного состояния. По-видимому, при кислородном голодании мозг может очень недолго получать энергию за счет процессов гликолиза.

Установлено, что при инсулиновой коме содержание глюкозы в крови может снижаться до 1 ммоль/л, потребление кислорода мозгом в этих условиях не более 1,9 мл/100 г в 1 мин. В норме концентрация глюкозы в крови 3,3−5,0 ммоль/л, а мозг потребляет 3,4−3,7 мл кислорода на 100 г массы в 1 мин. При инсулиновой коме нарушаются процессы окислительного фосфорилирования в мозговой ткани, снижается концентрация АТФ и происходит изменение функций мозга.

Возбуждение и наркоз быстро сказываются на обмене лабильных фосфатов. В состоянии наркоза наблюдается угнетение дыхания; содержание АТФ и креатинфосфата повышено, а уровень неорганического фосфата снижен. Следовательно, сокращается потребление мозгом соединений, богатых энергией.

Напротив, при раздражении интенсивность дыхания усиливается в 2−4 раза; уровень АТФ и креатинфосфата снижается, а количество неорганического фосфата увеличивается. Эти изменения наступают независимо от того, каким образом произошло стимулирование нервных процессов, а именно путем электрического разряжения или химическим путем.

Метаболизм аминокислот и белков

Общее содержание аминокислот в ткани мозга человека в 8 раз превышает концентрацию их в крови. Аминокислотный состав мозга отличается определенной специфичностью. Так, концентрация свободной глутаминовой кислоты в мозге выше, чем в любом другом органе млекопитающих (10 мкмоль/г).

На долю глутаминовой кислоты вместе с ее амидом глутамином и трипептидом глутатионом приходится более 50% а-аминоазота головного мозга. В мозге содержится ряд свободных аминокислот, которые лишь в незначительных количествах обнаруживаются в других тканя млекопитающих. Это у-аминомасляная кислота, N-ацетиласпарагиновая кислота и цистатионин.

Известно, что обмен аминокислот в мозговой ткани протекает в разных направлениях. Прежде всего пул свободных аминокислот используется как источник «сырья» для синтеза белков и биологически активных аминов. Одна из функций дикарбоновых аминокислот в головном мозге-связывание аммиака, освобождающегося при возбуждении нервных клеток.

Поступления аминокислот в мозговую ткань и выход из нее, а также использование глюкозы крови для синтеза аминокислот нейронов и глии

в разных отделах мозга различны. Эти различия в существенной мере обусловлены наличием гематоэнцефалического барьера, который следует рассматривать конкретно для каждого вещества или класса веществ. Ге-матоэнцефалический барьер не следует представлять как единое структурное образование, создающее преграду для транспорта; различие относительно скоростей поступления веществ в разные отделы мозга может быть обусловлено особенностями эпителия сосудов, базальной мембраны или расположения прилегающих отростков глиальных клеток. В условиях in vitro (в отсутствие барьера) многие аминокислоты накапливаются в клетках мозга за счет активного транспорта, в котором участвует несколько самостоятельных Na+-зависимых транспортных систем.

Установлено, что белки в головном мозге находятся в состоянии активного обновления, о чем свидетельствует быстрое включение радиоактивных аминокислот в молекулы белков. Однако в разных отделах головного мозга скорость синтеза и распада белковых молекул неодинакова. Белки серого вещества полушарий большого мозга и белки мозжечка отличаются особенно большой скоростью обновления. В участках головного мозга, богатых проводниковыми структурами-аксонами (белое вещество головного мозга), скорость синтеза и распада белковых молекул меньше.

При различных функциональных состояниях ЦНС наступают изменения в интенсивности обновления белков. Так, при действии на организм животных возбуждающих агентов (фармакологические средства и электрический ток) в головном мозге усиливается интенсивность обмена белков. Под влиянием наркоза скорость распада и синтеза белков снижается.

Возбуждение нервной системы сопровождается повышением содержания аммиака в нервной ткани. Это явление наблюдается как при раздражении периферических нервов, так и при раздражении мозга. Считают, что образование аммиака при возбуждении в первую очередь происходит за счет дезаминирования АМФ.

Аммиак-очень ядовитое вещество, особенно для нервной системы. Особую роль в устранении аммиака играет глутаминовая кислота. Она способна связывать аммиак с образованием глутамина-безвредного для нервной ткани вещества. Данная реакция амидирования протекает при участии фермента глутаминсинтетазы и требует затраты энергии АТФ (см. главу 12).

Непосредственный источник глутаминовой кислоты в мозговой ткани-путь восстановительного аминирования а-кетоглутаровой кислоты: Образование глутаминовой кислоты из а-кетоглутаровой и аммиака является важным механизмом нейтрализации аммиака в ткани мозга, где путь устранения аммиака за счет синтеза мочевины не играет существенной роли.

Кроме того, глутаминовая кислота в нервной ткани может декарбоксилироваться с образованием ГАМК:

ГАМК в наибольшем количестве содержится в сером веществе головного мозга. В спинном мозге и периферических нервах ее значительно меньше.

Метаболизм липидов

Липиды составляют около половины сухой массы головного мозга. Как отмечалось, в нервных клетках серого вещества особенно много фосфо-глицеридов, а в миелиновых оболочках нервных стволов — сфингомиелина. Из фосфоглицеридов серого вещества мозга наиболее интенсивно обновляются фосфатидилхолины и особенно фосфатидилинозитол. Обмен ли­пидов миелиновых оболочек протекает с небольшой скоростью. Холестерин, цереброзиды и сфингомиелины обновляются очень медленно.

Ткань головного мозга взрослого человека содержит много холестерина (около 25 г).

У новорожденных в головном мозге всего 2 г холестерина; количество его резко возрастает в первый год жизни (примерно в 3 раза), при этом биосинтез холестерина происходит в самой мозговой ткани. У взрослых людей синтез холестерина в головном мозге резко снижается.

Основная часть холестерина в зрелом мозге находится в неэтерифици-рованном состоянии, эфиры холестерина обнаруживаются в относительно высокой концентрации в участках активной миелинизации. Пути биосинтеза фосфоглицеридов в мозге сходны с теми, которые осуществляются в других тканях. Жирные кислоты образуются в основном из глюкозы, однако частично синтез их происходит из ацетоацетата, цитрата и даже ацетил-аспартата.

ХИМИЧЕСКИЕ ОСНОВЫ ВОЗНИКНОВЕНИЯ И ПРОВЕДЕНИЯ НЕРВНЫХ ИМПУЛЬСОВ

Рассмотрим химические основы возникновения и поддержания биоэлектрических потенциалов (потенциала покоя и потенциала действия).

Большинство исследователей придерживаются мнения, что явления электрической поляризации клетки обусловлены неравномерным распределением ионов К+ и Na+ по обе стороны клеточной мембраны. Мембрана обладает избирательной проницаемостью: большей для ионов К+ и значительно меньшей для ионов Na+. Кроме того, в нервных клетках существует механизм, который поддерживает внутриклеточное содержание натрия на низком уровне вопреки градиенту концентрации. Этот механизм получил название натриевого насоса.

При определенных условиях резко повышается проницаемость мембра­ны для ионов Na+.

В состоянии покоя внутренняя сторона клеточной мембраны заряжена электроотрицательно по отношению к наружной поверхности. Объясняется это тем, что количество ионов Na+, выкачиваемых из клетки с помощью натриевого насоса, не вполне точно уравновешивается поступлением в клетку ионов К+. В связи с этим часть катионов натрия удерживается внутренним слоем противоионов (анионов) на наружной поверхности клеточной мембраны. Таким образом, на мембранах, ограничивающих нервные клетки, поддерживается разность электрических потенциалов (трансмембранная раз­ность электрических потенциалов); эти мембраны электрически возбудимы.

При возбуждении, вызванном тем или иным агентом, селективно изменяется проницаемость мембраны нервной клетки (аксона): увеличивается избирательно для ионов Na+ (примерно в 500 раз) и остается без изменения

для ионов К +. В результате ионы Na+ устремляются внутрь клетки. Компенсирующий поток ионов К+, направляющийся из клетки, несколько запаздывает. Это приводит к возникновению отрицательного заряда на наружной поверхности клеточной мембраны. Внутренняя поверхность мембраны приобретает положительный заряд; происходит перезарядка клеточной мембраны (в частности, мембраны аксона, т. е. нервного волокна), и возникает потенциал действия, или спайк. Продолжительность спайка не превышает 1 мс. Он имеет восходящую фазу, пик и нисходящую фазу. Нисходящая фаза (падение потенциала) связана с нарастающим преобладанием выхода ионов К+ над поступлением ионов Na+-мембранный потенциал возвращается к норме. После проведения импульса в клетке восстанавливается состояние покоя. В этот период ионы Na+, вошедшие в нейрон при возбуждении, заменяются на ионы К+. Этот переход происходит против градиента концентрации, так как ионов Na+ во внешней среде, окружающей нейроны, намного больше, чем в клетке после момента ее возбуждения. Переход ионов Na+ против градиента концентрации, как отмечалось, осуществляется с помощью натриевого насоса, для работы которого необходима энергия АТФ. В конце концов все это приводит к восстановлению исходной концентрации катионов калия и натрия внутри клетки (аксона), и нерв готов для получения следующего импульса возбуждения. Заметим, что миелиновые мембраны, образуемые шванновскими клетками, окутывают нервные волокна и служат электрическим изолятором. Этот изоляционный слой покрывает большинство нервных волокон и сильно ускоряет распространение электрической волны (сигнала); при этом ионы входят в клетку и выходят из нее только в тех местах, где изолятор отсутствует. Как уже отмечалось, миелиновая мембрана состоит из фосфолипидов, в частности из сфингомиелина, холестерина, а также белков и гликосфинголипидов. Некоторые заболевания, например рассеянный склероз, характеризуются демиелинизацией и нарушением проведения нервного импульса. Другим не менее важным процессом для нервной ткани является передача нервного импульса от одной нервной клетки к другой или воздействие на клетки эффекторного органа.

Биохимия — Стр 2

Роль медиаторов в передаче нервных импульсов

Связь миллиардов нейронов мозга осуществляется посредством медиаторов. Химическое вещество можно отнести к числу медиаторов лишь в том случае, если оно удовлетворяет ряду критериев. В нервных волокнах должны содержаться ферменты, необходимые для синтеза этого вещества. При раздражении нервов это вещество должно выделяться, реагировать со специфическим рецептором на постсинаптической клетке и вызывать биологическую реакцию. Должны существовать механизмы, быстро прекращающие действие этого вещества.

Всем этим критериям удовлетворяют два вещества-ацетилхолин и норадреналин. Содержащие их нервы называют соответственно холинергическими и адренергическими. В соответствии с этим все эфферентные системы делят на холинорецепторы и адренорецепторы.

Ряд других химических веществ удовлетворяют многим, но не всем перечисленным критериям. К таким медиаторам относят дофамин, адреналин, серотонин, октопамин, гистамин, ГАМК и др.

Обширная группа холинорецепторов весьма неоднородна как в структурном, так и в функциональном отношении. Объединяют их медиатор ацетилхолин и общая схема строения синапса.

Ацетилхолин представляет собой сложный эфир уксусной кислоты и холина. Он синтезируется в нервной клетке из холина и активной формы ацетата- ацетилкоэнзима, А при помощи специального фермента холин-ацетилтрансферазы (холинацетилазы):

Синапс можно представить себе как узкое пространство (щель), огра­ниченное с одной стороны пресинаптической, а с другой- постсинапти-ческой мембраной Пресинаптическая мембрана состоит из внутреннего слоя, принадлежащего цитоплазме нервного окончания, и на­ружного слоя, образованного нейроглией. Мембрана в некоторых местах утолщена и уплотнена, в других истончена и имеет отверстия для сообще­ния цитоплазмы аксона с синаптическим пространством. Постсинаптическая мембрана менее плотная, не имеет отверстий. Подобным образом построены и нервно-мышечные синапсы, но они имеют более сложное строение мембранного комплекса.

В общих чертах картину участия ацетилхолина в осуществлении пере­дачи нервного импульса возбуждения можно представить следующим образом. В синаптических нервных окончаниях имеются пузырьки (вези­кулы) диаметром 30−80 нм, которые содержат нейромедиаторы. Эти пузырьки покрыты оболочкой, которая образована белком клатрином (мол. масса 180 000).

В холинергических синапсах каждый пузырек диамет­ром 80 нм содержит ~ 40 000 молекул ацетилхолина. При возбуждении высвобождение медиатора происходит «квантами», т. е. путем полного опорожнения каждого отдельного пузырька. В нормальных условиях под влиянием сильного импульса выделяется примерно 100−200 квантов ме­диатора-количество, достаточное для инициирования потенциала действия в постсинаптическом нейроне. Происходит это, по-видимому, следующим образом. Деполяризация мембраны синаптических окончаний вызывает быстрый ток ионов Са2+ в клетку. Временное увеличение внутриклеточной концентрации ионов Са2+ стимулирует слияние мембраны синаптических пузырьков с плазматической мембраной и таким образом запускает процесс высвобождения их содержимого. Для выброса содержимого одного пузырька требуется примерно 4 иона Са2 +. Выделенный в синаптическую щель ацетилхолин вступает во взаимодействие с белком-хеморецептором, входящим в состав постсинаптической мембраны. В результате изменяется проницаемость мембраны-резко увеличивается ее пропускная способность для ионов Na+. Взаимодействие между рецептором и медиатором запускает ряд реакций, заставляющих постсинаптическую нервную клетку или эффекторную клетку выполнять свою специфическую функцию. После выделения медиатора должна наступить фаза его быстрой инактивации, или удаления, чтобы подготовить синапс к восприятию нового импульса

В холинергических синапсах это происходит двумя путями. Первый путь заключается в том, что ацетилхолин подвергается ферментативному гидролизу. Второй путь-это энергозависимый активный транспорт ацетилхолина в нейрон, где он накапливается для последующего повторного использования.

Гидролитический распад ацетилхолина на уксусную кислоту и холин катализируется ферментом, который получил название «ацетилхолинэсте-раза»:

В большинстве отделов головного мозга гидролиз ацетилхолина осуществляется ацетилхолинэстеразой (истинная холинэстераза, которая гид-ролизует ацетилхолин быстрее, чем иные эфиры холина).

В нервной ткани существуют и другие эстеразы, которые способны гидролизовать ацетилхолин, но значительно медленнее, чем, например, бутирилхолин. Эти эстеразы называются холинэстеразой (или псевдохолинэстеразой).

К числу холинергических систем относятся моторные нейроны, образующие нервно-мышечные соединения, все преганглионарные нейроны автономной нервной системы и постганглионарные нейроны парасимпатической нервной системы. Большое количество холинергических симпатических областей обнаружено также в головном мозге. В зависимости от чувствительности к той или иной группе химических соединений холинергические нейроны делятся на мускариновые (активируемые мускарином) и никотиновые (активируемые никотином).

Мускариновые рецепторы ацетилхолина, имеющиеся во многих нейронах автономной нервной системы, специфически блокируются атропином. Никотиновые синапсы присутствуют в ганглиях и скелетных мышцах. Их ингибиторами являются кураре и активный компонент этого яда D-тубокурарин.

Необходимо подчеркнуть, что в адренорецепторах существует два вида рецепторов для норадреналина: а- и (3-адренергические рецепторы. Эти рецепторы можно отличить друг от друга по специфическим реакциям, которые они вызывают, а также по тем специфическим агентам, которые способны блокировать данные реакции.

(3-Адренергические рецепторы включают эфферентную клетку с помощью аденозин-3', 5'-монофосфата, или цАМФ-универсального «второго посредника» между гормонами и различными функциями клеток, на которые воздействуют гормоны .

Установлено, что как только р-адренергический рецептор, расположенный на наружной поверхности мембраны эффекторной клетки, начинает взаимодействовать с норадреналином, на внутренней поверхности клеточной мембраны активируется фермент аденилатциклаза. Затем в клетке аденилатциклаза превращает АТФ в цАМФ; последний в свою очередь способен оказывать влияние на метаболизм клетки. Этот сложный ряд последовательных реакций может быть заблокирован пропраноло-лом-веществом, препятствующим связыванию норадреналина с (в-адренергическим рецептором.

Известно, что в метаболизме катехоламиновых медиаторов особая роль принадлежит ферменту моноаминоксидазе (МАО).

Этот фермент удаляет аминогруппу (NH2) у норадреналина, серотонина, дофамина и адреналина, тем самым инактивируя указанные медиаторы. В последние годы было показано, что, помимо ферментативного превращения, существует и другой механизм быстрой инактивации, точнее удаления, медиаторов. Оказалось, что норадреналин быстро исчезает из синаптической щели в результате вторичного поглощения симпатическими нервами; вновь оказавшись в нервном волокне, медиатор, естественно, не может воздействовать на постсинаптические клетки. Конкретный механизм этого явления пока не вполне ясен.

Адренергическая и холинергическая системы головного мозга тесно взаимодействуют с другими системами мозга, в частности использующими серотонин в качестве медиатора. В основном серотонинсодержащие нейроны сосредоточены в ядрах мозгового ствола. Нейромедиаторная роль серотонина осуществляется в результате взаимодействия серотонина со специфическими серотонинергическими рецепторами. Исследования, проведенные с ингибитором синтеза серотонина n-хлорфенилаланином, а также с другими ингибиторами, дают основания считать, что серотонин влияет на процессы сна. Выявлено также, что торможение кортикостероидами секреторной активности гипофиза оказывается менее эффективным у тех животных, мозг которых беднее серотонином.

Важным нейромедиатором, выполняющим тормозные функции, является у-аминомасляная кислота (ГАМК), количество которой в головном мозге во много раз больше, чем других нейромедиаторов. Так, в гипоталамусе суммарное содержание ацетилхолина, норадреналина, дофамина и серотонина не превышает 10 мкг/г, в то время как ГАМК в этом отделе головного мозга более 600 мкг/г. ГАМК увеличивает проницаемость постсинаптических мембран для ионов К+ и тем самым отдаляет мембранный потенциал от порогового уровня, при котором возникает потенциал действия; таким образом, ГАМК-это тормозной нейромедиатор. ГАМК образуется при декарбоксилировании глутамата в реакции, катализируемой глутаматдекарбоксилазой:

В терапевтической практике применяется большое количество лекарственных средств, которые действуют через систему медиаторов. Многие лекарственные препараты, успешно применяемые при лечении гипертонии, влияют на накопление и выделение адренергических медиаторов. Например, резерпин-понижающее артериальное давление/средство специфически тормозит процесс переноса катехоламинов в специальные гранулы нейронов и тем самым делает эти амины доступными действию эндогенной МАО.

Гипотензивные лекарственные препараты, такие, как а-метилдофа, под действием содержащихся в нервной клетке (аксоне) ферментов превращаются в вещества, напоминающие по своему строению норадреналин. Эти «ложные» медиаторы накапливаются и выделяются вместе с естественными медиаторами, «разбавляя» их и тем самым снижая их эффект.

Многие антидепрессанты (вещества, снимающие депрессию) увеличивают содержание катехоламинов в синаптической щели, т. е. количество медиаторов для стимулирования рецептора возрастает. К таким веществам, в частности, относятся имипрамин (блокирует поглощение норадреналина нервными волокнами), амфетамин (одновременно способствует выделению норадреналина и блокирует его поглощение), ингибиторы МАО (подавляют метаболизм катехоламинов) и др. В связи с этим возникла катехол-аминовая гипотеза депрессивных состояний, согласно которой психическая депрессия связана с недостатком катехоламинов в мозге.

В начале 50-х годов фармакологи выяснили, что известный галлюциноген диэтиламин лизергиновой кислоты (ЛСД) не только сходен по химическому строению с серотонином, но и нейтрализует некоторые его фармакологические эффекты (блокируя рецепторы серотонина).

Поэтому было высказано предположение, что нарушение обмена серотонина может быть причиной возникновения особых психических заболеваний.

Считают, что такие антипсихотические средства, как аминазин (хлор-промазин) и галоперидол, усиливая синтез катехоламинов, способны блокировать дофаминовые рецепторы в мозге.

Механизмы памяти

Память не сосредоточена в одном строго локализованном участке мозга, подобно центрам зрения, слуха, речи и т. д. В то же время память-не свойство всего мозга в целом. Субстратом памяти человека являются нейроны.

Память человека нельзя рассматривать в отрыве от его деятельности, так как не познание познает, не мышление мыслит, не память запоминает и воспроизводит, а познает, мыслит, запоминает и воспроизводит человек, определенная личность.

В последние годы отчетливо показано, что обучение животного новым навыкам отражается на химизме мозговых клеток (нейронов): меняются количество уридина в цитоплазматической РНК, степень метилирования ДНК и фосфорилирования ядерных белков. Применение стимуляторов и веществ-предшественников РНК облегчает обучение, а введение блока

торов синтеза РНК, напротив, затрудняет этот процесс. Существуют данные, что после запоминания информации меняется антигенный состав мозговой ткани. Принято выделять несколько форм биологической памяти: генетическую, иммунологическую и нейрологическую. Биохимические основы генетической памяти более или менее ясны. Ее носителем является ДНК клетки. Следующей по сложности формой памяти является иммунологическая память. Этот вид памяти хотя и включает элементы генетической памяти, но находится на более высокой ступени сложности. Наконец, система нейрологической памяти еще более сложна. Эта форма в свою очередь может быть разделена на кратковременную память (КП) и долговременную память (ДП).

В основе КП, по всей вероятности, лежит «циркуляция» информации, полученной в виде импульсов, по замкнутым цепям нейронов. При этом синаптический эффект, изменения ядерно-ядрышкового аппарата, выброс в цитоплазму нейрона биологическд-активных веществ и сопутствующая этим процессам перестройка обмена веществ клетки-все это может расцениваться как показатели функционирования КП.

Включение блоков ДП обеспечивается примерно через 10 мин после прихода информации в клетку. За это время происходит перестройка биологических свойств нервной клетки. Ряд исследователей считают, что афферентная импульсация, приходящая в нервные клетки во время обучения, вызывает либо количественную активацию синтеза РНК и белка, что может приводить к установлению новых синаптических связей и перестройке существующих, либо наступающая активация синтеза нуклеиновых кислот и белка носит целенаправленный, специфический характер, а синтезированные молекулы являются хранилищем информации.

Роль нейромедиаторов в регуляции памяти. Процессы памяти тесно связаны с модификацией синтетических процессов. Поэтому химические передатчики нервного возбуждения должны играть в этом принципиальную роль. Накоплен большой эспериментальный материал о значении нейромедиаторов в процессах памяти и обучения. Полученные к настоящему времени результаты свидетельствуют о большой значимости основных медиаторов (ацетилхолин, норадреналин, дофамин, серотонин, ГАМК) в этих процессах, хотя конкретные формы участия каждого медиатора зависят от того, какой именно тип информации запоминается. Например, показано, что снижение содержания ацетилхолина в мозге ингибиторами холинацетилазы нарушает обучение, а его повышение ускоряет выработку оборонительных навыков. Серотонин облегчает выработку и хранение навыков, основанных на положительном (пищевом) подкреплении, и отрицательно влияет на формирование оборонительных реакций. По существующим представлениям, норадренергическая и серотонинергическая системы являются в значительной степени антагонистами в отношении процессов памяти, и способность к выработке тех или иных навыков зависит не столько от абсолютного уровня содержания того или иного медиатора, сколько от соотношения активностей этих систем. Так, нарушения, вызванные увеличением содержания серотонина, могут быть компенсированы параллельной активацией норадренергической системы и наоборот. Следует заметить, что существуют многочисленные данные, свидетельствующие о выраженном угнетающем влиянии на процессы запоминания и обучения со стороны ГАМК.

Олигопептиды-регуляторы памяти. Установлено, что некоторые олигопептиды, представляющие собой молекулы из небольшого числа аминокислотных остатков, способны модифицировать процесс обучения и влиять

на степень выработки, хранения и угасания приобретенных поведенческих реакций. Из пептидов, относящихся к числу гормонов, наиболее выраженное действие на процессы обучения и памяти оказывают гормоны гипофиза — адренокортикотропный гормон (АКТГ) и вазопрессин. При изучении влияния АКТГ на процессы памяти было показано, что главная роль в его действии принадлежит фрагменту АКТГ4-ю, который оказывает на эти процессы практически такой же эффект, как и целый гормон. Кроме того, установлено, что стимулирующее влияние фрагментов АКТГ на обучение не связано с собственно гормональной функцией пептида, так как фрагменты — активаторы памяти лишены такой функции.

Гормон задней доли гипофиза вазопрессин также обладает ярко выраженным положительным влиянием на выработку условных реакций у животных. Стимуляция вазопрессином процессов памяти не связана с его гормональным действием, так как такое же стимулирующее действие оказывают некоторые его аналоги и фрагменты, не вызывающие свойственных вазопрессину гормональных реакций. Есть все основания считать, что АКТГ и вазопрессин либо их фрагменты, образующиеся в организме в результате расщепления гормонов, не только стимулируют запоминание при введении их извне, но постоянно функционируют в мозге в качестве регуляторов процессов памяти

Пептиды и болевые реакции

В 70-х годах в головном мозге различных позвоночных животных были обнаружены специфические рецепторы морфина. Эти рецепторы сосредоточены на синаптических мембранах. Наиболее богата ими лимбическая система, от которой зависит эмоциональный ответ. В дальнейшем из мозговой ткани выделили эндогенные пептиды, имитирующие при инъекциях различные эффекты морфина. Эти пептиды, обладающие способностью специфически связываться с опиатными рецепторами, получили название эндорфинов и энкефалинов.

Оказалось, что пептиды с морфиноподобной активностью являются производными р-липотропного гормона гипофиза. Установлено, что |в-эндорфин представляет собой фрагмент (3-липотропина с 61-го по 91-й, уэндорфин-с 61-го по 77-й и а-эндорфин-с 61-го по 76-й аминокислотный остаток.

Энкефалины-также фрагменты (3-липотропина, но они значительно меньше, чем эндорфины. Энкефалины являются пентапептидами. Наиболее изучены два пентапептида: метионинэнкефалин (Тир-Гли- Гли-Фен-Мет) и лейцинэнкефалин (Тир-Гли-Гли-Фен-Лей).

Содержание метионинэнкефалинов в головном мозге в 4 раза превышает содержание лейцинэнкефалинов.

ЦЕРЕБРОСПИНАЛЬНАЯ ЖИДКОСТЬ

Общий объем цереброспинальной жидкости у взрослого человека в норме составляет около 125 мл; каждые 3−4 ч жидкость обновляется. Иногда цереброспинальную жидкость рассматривают как первичный транссудат или ультрафильтрат плазмы. Состав существенно отличается от состава плазмы крови, что позволяет приписывать сосудистому эндотелию в нервной системе главную роль в осуществлении барьерной функции. Вода в цереброспинальной жидкости составляет 99%, на долю плотного остатка приходится около 1%

Содержание белка в цереброспинальной жидкости незначительно (0,15−0,40 г/л), причем отношение альбумины/глобулины равно 4; липидов в сотни раз меньше, чем в плазме крови. Возможно, что липиды плазмы крови в цереброспинальной жидкости отсутствуют. Общее содержание низкомолекулярных азотсодержащих веществ, особенно аминокислот, в 2−2,5 раза меньше, чем в крови. В ткани мозга, как отмечалось, количество свободных аминокислот велико и во много раз превышает концентрацию их в крови и тем более в цереброспинальной жидкости. Установлено, что некоторые аминокислоты (например, глутаминовая кис­лота) почти не проникают через гематоэнцефалический барьер. В то же время амиды аминокислот (в частности, глутамин) легко преодолевают этот барьер. Содержание глюкозы в цереброспинальной жидкости относительно велико (2,50−4,16 ммоль/л), но несколько меньше, чем в крови, причем концентрация глюкозы в спинномозговой жидкости может по­вышаться или снижаться в зависимости от изменений содержания глюкозы в крови.

По содержанию ионов К+ и Na+ цереброспинальная жидкость практически не отличается от плазмы крови. Ионов Са2+ в ней почти в 2 раза меньше, чем в плазме крови. Содержание ионов С1~ заметно выше, а концентрация ионов бикарбоната несколько ниже в цереброспинальной жидкости, чем в плазме. Таким образом, минеральный состав цереброспинальной жидкости имеет характерные особенности и отличается от такового плазмы крови. Все это дает основание считать, что проникновение веществ через мембрану сосудистого эндотелия нервной системы- активный биохимический процесс. Источниками энергии для активного транспорта служат процесс аэробного окисления глюкозы и лишь в незначительной степени гликолиз.

Исследование цереброспинальной жидкости при патологических состояниях имеет важное клиническое значение. Установлено, что при остром гнойном менингите содержание белка в ней может резко повышаться (5−20 г/л при норме 0,15−0,40 г/л).

Концентрация глюкозы также существенно изменяется. Гипогликорахия (уменьшение содержания глю­козы в цереброспинальной жидкости) характерна для менингита, тогда как гипергликорахия (увеличение содержания глюкозы в цереброспинальной жидкости) наблюдается при энцефалитах, диабете и т. д. Характерны снижение концентрации хлора в цереброспинальной жидкости при менингитах и повышение его уровня при энцефалитах. Показано также, что при менингитах, инсультах, опухолях мозга, травмах в цереброспинальной жидкости повышается активность АсАТ, ЛДГ и ряда других ферментов.

Если вы автор этого текста и считаете, что нарушаются ваши авторские права или не желаете чтобы текст публиковался на сайте ForPsy.ru, отправьте ссылку на статью и запрос на удаление:

Отправить запрос

Adblock
detector